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a b s t r a c t

The paper studies decentralized stabilizability for multi-agent systems with general linear dynamics.
The stabilizability problem is formulated in a way that the protocol performance can be evaluated by
means of the stabilizability region and the feedback gain. For fixed topology, it is proved that the system
is stabilizable if and only if external control inputs are exerted on some indicated agents. The result is
further shown to be a prerequisite for subsequent design of the corresponding decentralized external self-
feedback control, which is also necessary and sufficient. Based on this, twomethods are presented to find
the agents under which stabilizability can be reached, and the region of stabilizability is given to evaluate
the protocol performance. For switching interaction topology, it is shown that the system is stabilizable
even if each of its subsystems is not. Finally, the results are employed to cope with the decentralized set-
point formation control problem, for which some necessary and/or sufficient conditions are developed.
Numerical simulations are presented to demonstrate the effectiveness of the proposed results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the distributed cooperation control of multi-
agent systems has received great attention. Compared with tra-
ditional control systems, multi-agent systems have enormous
advantages such as reliability, flexibility, and adaptability to un-
certain environments. Cooperation control of multi-agent systems
has a broad range of applications in the fields of science and
engineering including formation control of unmanned air vehi-
cles (UAVs), scheduling of automated highway systems, and dis-
tributed estimation over sensor networks. Research hotspots in
distributed control and coordination of multi-agent systems in-
clude consensus problems [1–5], flocking problems [6–8], forma-
tion problems [9–11], and containment problems [12–14].

Controllability is a basic concept in classical control theory.
The concept of controllability of multi-agent systems was first
formulated by Tanner, who established necessary and sufficient
conditions in terms of eigenvalues and eigenvectors of the system
matrix corresponding to the follower nodes [15]. Thereafter, more
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and more researchers devoted themselves to the investigation
of this problem. In [16], the authors gave a sufficient condition
for controllability from the graph-theoretic perspective. The
condition relies on the notion of equitable partitions of a graph.
In [17], relaxed equitable partition was employed to consider
controllability properties for a leader–follower network. In [18,19],
the authors investigated the controllability of a single-leader
multi-agent system under fixed and switching topologies. Both
continuous-time and discrete-time cases were considered therein.
Controllability under switching topology and time delay was
studied in [20,21], respectively. Uncontrollable topology structures
and graph-theoretic properties were given in [22]. In addition, the
leaders’ selection problem was investigated in [23], where some
necessary and sufficient conditions were proposed in terms of
Downer branch and subgraphs to characterize the leaders’ role in
controllability. Although the controllability has been extensively
studied, examining the stabilizability of multi-agent systems is in
its infancy. Recent works in this direction include [24], where the
authors proposed a new concept of ‘‘stabilizability’’ formulti-agent
systems. The concept is studied for a group of single integrators
under a fixed topology.

In this paper, we study the stabilizability problem in a more
general case, where the dynamics of each agent is an Nth-order
linear control system, rather than a single or double integrator
as in most existing studies. For fixed topology, it is proved that
the system is stabilizable if and only if external control inputs are
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exerted on some indicated agents. For switching interaction topol-
ogy, it is shown that multi-agent system is stabilizable even if each
of its subsystems is not stabilizable, if external control inputs are
exerted on some indicated agents in the union graph. This paper is
partly motivated by Kim et al. [24]. The major differences between
this work and [24] are as follows.

(i) Under fixed topology, [24] considered the case of agents
with single integrator dynamics, while we consider general linear
dynamics instead of a single integrator, which brings new features
for the study of the stabilizability problem.

(ii) In [24], there is no issue of stabilizability protocol design. In
our case, it is shown that the stabilizability admits protocol per-
formance evaluation by means of the stabilizability region and the
feedback gain. At the same time, twomethods are presented to find
the agents under which stabilizability can be reached.

(iii) In [24], the stabilizability problem is considered only
for fixed topology. Here we consider both fixed and switching
topologies. It is shown that stabilizability under switching topology
can be achieved even if each of the subsystems is not stabilizable.

From an application perspective, those results are employed to
cope with the decentralized set-point formation control problem,
for which some necessary and/or sufficient conditions are devel-
oped. Simulations are performed to validate the theoretical results.

The paper is organized as follows. Section 2 contains some pre-
liminaries as well as some definitions and lemmas. Section 3 dis-
cusses the stabilizability problem of multi-agent systems under
fixed topology. In Section 4, the stabilizability problem is studied
under switching topology. In Section 5, the results are applied to
the decentralized set-point formation control problem. Simulation
results are presented in Section 6. The conclusion is given in Sec-
tion 7.

Notation. Throughout this paper, the following notation is used.
Let 0(0m×n) denote an all-zero vector or matrix with compatible
dimension (dimension m × n). In and diag{a1, . . . , an} represent
the n × n identity and diagonal matrices, respectively. Matrix P >
0 (≥0, <0, ≤0)means P is positive definite (positive semidefinite,
negative definite, or negative semidefinite). Let 1n denote the all-1
vector with dimension n. j is the imaginary unit. R(λ) represents
the real part of a complex number λ. ∧(A) denotes the eigenvalue
set of A and ∧

+(A) denotes the eigenvalue set of A which have
positive real parts. R and C denote the set of real numbers and the
set of complex numbers, respectively. C>0 (C≥0) denotes the set of
complex numbers possessing positive (nonnegative) real parts. ⊗
denotes the Kronecker product.

2. Preliminaries

2.1. Graph preliminaries

In this section, some useful concepts and notation in graph
theory are briefly reviewed. In this paper, ‘‘nodes’’ or ‘‘agents’’ are
used interchangeably with ‘‘vertices’’, and directed graph will be
used to model the interaction topology among agents.

A directed (weighted) graph is denoted by G = (N , E, A),
where N = {v1, v2, . . . , vn} and E ⊆ N × N represent, respec-
tively, the vertex set and the edge set; A = [aij] ∈ Rn×n is the
weighted adjacency matrix with aij > 0 representing the reliabil-
ity of the interaction from agent j to agent i. An edge of G is de-
noted by eij = {vj, vi}, where vj is called the parent vertex of vi
and vi the child vertex of vj. In this paper, we assume that there
are no self-loops, i.e., eii ∉ E . The set of neighbors of node vi is
denoted by Ni = {vj ∈ N : eij = {vj, vi} ∈ E, j ≠ i}. A di-
rected path in a directed graph G is a sequence vi1 , . . . , vik of dis-
tinct vertices with (vis , vis+1) ∈ E , for s = 1, . . . , k− 1 and a weak
path, with either (vis , vis+1) or (vis+1 , vis) ∈ E . A directed graphG is
strongly connected if there is a directed path that starts from vi and

ends at vj between every pair of distinct vertices vi, vj in G, and is
weakly connected if any two vertices can be jointed by aweak path.
A strong component of a directed graph is an induced subgraph
that ismaximal, and subject to being strongly connected. Since any
subgraph consisting of only a vertex is strongly connected, it fol-
lows that each vertex lies in a strong component. Two vertices in
the same strong component have an equivalence relation. For a di-
rected graph G, the in-degree and out-degree of node vi are de-
fined as degin(vi) =


vj∈Ni

aij and degout(vi) =


vj∈Ni
aji, re-

spectively. The degree matrix of G is a diagonal matrix defined as
△ = [△ij], where △ij = degin(vi) for i = j; otherwise, △ij = 0. The
Laplacian matrix L(G) = [lij] ∈ Rn×n of a graph G, abbreviated as
L, is defined by lij = −aij if i ≠ j and lij =


vj∈Ni

aij if i = j. It is
obvious that L = △ − A.

Definition 1 ([25]). An independent strongly connected compo-
nent (iSCC) of a digraph G = (N , E, A) is an induced subgraph
Ḡ = (N̄ , Ē, Ā) which is maximal, subject to being strongly con-
nected, and satisfies (vj, vi) ∉ E for any vj ∈ N \ N̄ and vi ∈ N̄ .
That is, Ḡ is strongly connected, and the unweighted digraph in-
duced by any set Ñ with N̄ ⊆ Ñ ⊆ N is strongly connected if and
only if Ñ = N̄ . Furthermore, there is no edge eij = {vj, vi} ∈ E

with parent vertex vj ∈ N \ N̄ and child vertex vi ∈ N̄ .

Remark 1. Since a single vertex of a directed graph constitutes a
strongly connected component, any directed graph contains up to
m (1 ≤ m ≤ n) iSCCs. The method of finding all the iSCCs for any
directed graph will be shown in Section 3.4.

2.2. Basic lemmas

The following three lemmas play a basic role for further analysis
of stabilizability in subsequent sections.

Lemma 1 ([26]). Let A ∈ Cn×n and A ≥ 0. Then A is irreducible if
and only if the directed graph G is strongly connected.

Lemma 2 ([26]). A matrix A = [aij] ∈ Cn×n is nonsingular if A is
irreducible and |aii| ≥


j≠i |aij| for all i, with the inequality being

strict for at least one i.

Lemma 3 ([14]). Suppose that directed graph G = (N , E, A) is
weakly connected and that L is the Laplacian matrix of G. Then
Rank(L) = n − m if and only if G = (N , E, A) contains m iSCCs.

3. Stabilizability under fixed topology

In this section, the multi-agent system has general linear dy-
namics. The stabilizability results are first derived with respect to
fixed topology. Then, the design method is proposed for the feed-
back gain matrix. Finally, two methods are given to find the exter-
nal control input vertices.

3.1. Problem formulation

Consider a group of n identical agents with general continuous-
time linear dynamics. The dynamics of each agent is described by

ẋi(t) = Axi(t) + Bui(t), i = 1, . . . , n, (1)

where xi ∈ RN is the state of agent i, and ui ∈ RP is the control
input. A ∈ RN×N and B ∈ RN×P are the system matrix and the
input matrix, respectively.

Assumption 1. The pair (A, B) is stabilizable.
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