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a b s t r a c t

This note focuses on state observer design for a general class of nonlinear discrete-time systems that
satisfies the one-sided Lipschitz condition. It has been shown that this condition may encompass a large
class of nonlinearities. However, challenging problems arise such as relevant choice of the Lyapunov
function or non convexity of the obtained stability conditions. Both full-order and reduced-order observer
designs are considered. In this work, themain contribution is to provide first somemathematical artifacts
on the Lyapunov function to obtain simple and workable stability conditions, furthermore we show how
to obtain LMI conditions to ensure asymptotic convergence. On the other hand, we extend the obtained
results to n−p reduced order observer design. High performances are shown through simulation results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, there has been significant research
activity on observer design for nonlinear systems; see [1–5] and
the references inside. This topic was motivated by the fact that
state estimation can be used for control design, diagnosis or, more
recently, synchronization and unknown input recovery [6–8]. It is
worth noticing, however, that most of the existing results concern
continuous time systems with few extensions to discrete-time
ones [9,10]. As no universal approach exists, state observers, in
particular for nonlinear systems, are still a challenging and open
problem. Beside the famous extended Kalman filter, we distinguish
a simple and useful nonlinear state observer that is based on the
solution of a Riccati-like equation and the Lipschitz condition,
we refer the reader to the pioneering works in [11,12] and their
extensions [13,14]. In recent contributions [13,14], limitations of
this approach have been highlighted. Indeed, it has been shown
that the solution of the Riccati-like equation depends strongly
on the Lipschitz constant, i.e. more the latter is larger, the more
difficult it is to find a solution to the Riccati-like equation.

In order to enlarge the domain of attraction and the class of
nonlinear systems that can be considered, a useful and less general
condition was recently introduced for observer design, that is the
one sided Lipschitz condition. Interesting works on state observer
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design for this type of systemswere recently developed in [15–20];
however the asymptotic stability condition leads to a challenging
problem that is the resolution of bilinear matrix inequalities.
More recently, Abbaszadeh and Marquez [20] have explored a
more general Lipschitz condition with interesting mathematical
artifacts to deduce LMI stability conditions. They show in particular
inherent advantages with respect to the conservativeness induced
by the classical Lipschitz condition. Inspired by their work we
investigate here the problem of state observer design for one
sided Lipschitz nonlinear discrete time systems. Indeed, it is worth
noticing that the extension of the existing results on continuous
time systems is a hard task and needs specific mathematical
artifacts.

First, we provide a general formulation of a quadratic Lyapunov
function and construct an extended state vector to formulate the
asymptotic stability condition in Section 2. On the other hand, we
provide simple and useful mathematical manipulations to deduce
sufficient conditions for asymptotic convergence in terms of linear
matrix inequalities. Furthermore, we extend the obtained results
to (n−p) reduced order observer design in Section 3. The lattermay
be interesting not only for real time applications but alsomay have
less restrictive stability conditions. In the last section, relevant
numerical examples are provided to show high performances of
both techniques. Two illustrative examples are given in Section 4
to show the efficiency of the proposed approach.
Notations. In a matrix, the notation (⋆) is used for the blocks
induced by symmetry. ⟨x, y⟩ = xTy is the scalar product. ∥x∥ =
√

⟨x, x⟩ =
√
xT x is the Euclidean vector norm. |a| is the absolute

0167-6911/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2012.05.005

http://dx.doi.org/10.1016/j.sysconle.2012.05.005
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:mzasad@uhp-nancy.fr
http://dx.doi.org/10.1016/j.sysconle.2012.05.005


880 M. Benallouch et al. / Systems & Control Letters 61 (2012) 879–886

value of the scalar a. λi(A) is the ith eigenvalue of matrix A and
∥A∥ =


λmax(ATA) is the induced 2-norm of matrix A. If A = AT ,

∥A∥ =


λmax(ATA) = |λmax(A)|. For a symmetric matrix A, A > 0
means that the matrix A is positive definite.

2. Full-order observer design

In this section, sufficient conditions for the existence of an
observer are derived and a design procedure is presented. Let us
consider the nonlinear system
x(k + 1) = Ax(k) + f (x(k), y(k))
y(k) = Cx(k) (1)

where x(k) ∈ Rn and y(k) ∈ Rp denote respectively the state
and the linear output. A and C are constant matrices of adequate
dimensions. f : Rn

× Rp
→ Rn is a real nonlinear vector field.

Our objective is to design an asymptotic observer from the
measured output signals y(k) to estimate the state x(k). The
following assumptions are made throughout this paper.

Assumption 1. 1. f is one-sided Lipschitz with respect to x(k). i.e,

⟨f (x, y) − f (x̂, y), x − x̂⟩ 6 ρ∥x − x̂∥2,

for any x, x̂ ∈ Rn, y ∈ Rp (2)

where ρ is the so-called one-sided Lipschitz constantwhich can
be positive or negative.

2. f is quadratically inner-bounded with respect to x(k). i.e,

∥f (x, y) − f (x̂, y)∥2 6 β∥x − x̂∥2
+ γ ⟨x − x̂, f (x, y) − f (x̂, y)⟩ (3)

where β and γ are real scalars.

Unlike the well-known Lipschitz condition, the constants ρ,
β and γ can be positive, negative or zero. In addition, if the
function f is Lipschitz, then it is also both one-sided Lipschitz and
quadratically inner-bounded (β > 0 andγ ), but the converse is not
true (see [20]). The one-sided Lipschitz condition (2), considered
in [15,18], provides a less conservative condition than the classical
Lipschitz one. The concept of quadratic inner-boundedness (3),
given in [20], is very useful to provide tractable LMI stability
conditions.

The observer of system (1) is defined by the following form

x̂(k + 1) = Ax̂(k) + f (x̂(k), y(k)) + K(y(k) − Cx̂(k)) (4)

where x̂(k) denotes the estimate of the state vector x(k) and K is
the gain matrix to be computed.

Let e(k) = x(k) − x̂(k). Then from observer (4) and system (1),
the dynamics of the state estimation error is described by

e(k + 1) = (A − KC)e(k) + 1fk (5)

where 1fk = f (x(k), y(k)) − f (x̂(k), y(k)).
Using the above assumption, the following theorem provides

sufficient conditions so that Eq. (4) is an asymptotic full-order
observer for system (1).

Theorem 1. Under Assumption 1, system (4) is an asymptotic ob-
server for system (1) if there exist scalars α > 0, µ1 > 0, µ2 > 0, ρ ,
β , γ and ϵ > 0 and matrices P = PT > αIn, Q = Q T > 0, S and X
that solve the following LMI

P S
ST Q


> 0 (6)

and

N < 0 (7)

where N is given by

N =


N11 N12 0 N14 N14 0
⋆ N22 N23 0 0 0
⋆ ⋆ N33 0 0 NT

23
⋆ ⋆ ⋆ −η−1P 0 0
⋆ ⋆ ⋆ ⋆ −ϵIn 0
⋆ ⋆ ⋆ ⋆ ⋆ −ϵ−1α2In

 (8)

with

η = 1 + 2(|β| + |ρ|)
S = S − (µ1γ − µ2)In
N11 = −P + 2(µ1β + µ2ρ)In
N12 = ηATP − ηCTX − S
N14 = ATP − CTX
N22 = ηP − Q − 2µ1In
N23 = S + α(γ − 1)In
N33 = Q − 2αIn.

(9)

Then, the gain for observer is given by K = P−1XT .

Proof. Let us consider the quadratic Lyapunov function

Vk =


e(k)
1fk

T  P S
ST Q

 
e(k)
1fk


(10)

where1fk defined in (5) and

P S
ST Q


> 0. Moreover, the variation

1V = Vk+1 − Vk of this Lyapunov function is given by

1V = eT (k + 1)Pe(k + 1) − eT (k)Pe(k) − 1f Tk Q1fk

+ 1f Tk+1Q1fk+1 + 2eT (k + 1)S1fk+1 − 2eT (k)S1fk. (11)

The one-sided Lipschitz and the quadratically inner-bounded
conditions (2) and (3) give the following inequality

µ2ρeT (k)e(k) − µ2eT (k)1fk > 0
µ1βeT (k)e(k) + µ1γ eT (k)1fk − µ11f Tk 1fk > 0

(12)

where µ1 and µ2 are arbitrary strictly positive scalars.
The following inequality is obtained by adding the left hand side

of (12) to (11)

1V 6 eT (k + 1)Pe(k + 1) + eT (k)(−P + 2(µ2ρ + µ1β)I)e(k)
+ 2eT (k + 1)S1fk+1 − 2eT (k)(S + (µ2 − µ1γ )I)1fk

− 1f Tk (Q + 2µ1I)1fk + 1f Tk+1Q1fk+1. (13)

On the other hand, using the one-sided Lipschitz and the inner-
bounded conditions (2) and (3)with the fact that P > αIn, it follows
that

|ρ|eT (k + 1)Pe(k + 1) − αeT (k + 1)1fk+1

> α|ρ|eT (k + 1)e(k + 1) − αeT (k + 1)1fk+1 > 0, (14)
|β|eT (k + 1)Pe(k + 1) + αγ eT (k + 1)1fk+1 − α1f Tk+11fk+1

> α|β|eT (k + 1)e(k + 1) + αγ eT (k + 1)1fk+1

− α1f Tk+11fk+1 > 0. (15)

Thus, by adding the left terms in inequalities (14) and (15)
to (13), we get

1V 6 ηeT (k + 1)Pe(k + 1) + eT (k)
× (−P + 2(µ2ρ + µ1β)I)e(k)
− 1f Tk (Q + 2µ1I)1fk − 2eT (k)(S + (µ2 − µ1γ )I)1fk
+ 2eT (k + 1)(S + α(γ − 1)I)1fk+1

+ 1f Tk+1(Q − 2αI)1fk+1. (16)
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