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a b s t r a c t

In this paper we show that a biologically-plausible pursuit law, designed to implement the motion
camouflage strategy, can be used as a building-block for generating collective motion. We introduce the
fundamental case of two individuals in mutual pursuit, which we refer to as Mutual Motion Camouflage,
and completely characterize its dynamics. The resulting system is of theoretical interest, because of its
rich symmetry and a certain similarity with the Kepler problem of celestial mechanics, concerning the
dynamics of two point particles under mutual gravitational attraction. It is also of practical interest,
because the individual trajectories have useful spatial coverage properties.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bird flocks, insect swarms and fish schools are examples of
collective behavior in the animal world, and reveal that limited
sensing capabilities and local interactions are sufficient to create
complex coordinated motion patterns. For example a recent study
on starlings [1] has shown that in flocks composed of more than
thousand birds, each starling interacts only with a limited number
of its neighbors, estimated to be 6 or 7. The mechanism through
which collective behavior arises in nature is still unknown, and
its investigation has great value from biological and engineering
points of view. Many current applications of robotic formations,
as well as potential new ones, would benefit from understanding
how properties of order, flexibility and robustness arise in natural
collectives.

Several mathematical models have been developed that
reproduce some of the features of natural collectives; in [2]
coordinatedmotion is obtained by forcing each individual to adjust
its direction based on the average direction of its neighbors, while
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in [3] motion mimicking fish schools is achieved by combining
for each individual, attraction from far neighbors, repulsion from
close neighbors, and velocity alignment with neighbors that are
within an adequate range. Control-theoretic analysis of models
based on these principles, or slight variants of the same, can
be found in [4] and [5], which use tools including graph-theory,
artificial potentials and Lyapunov stability. While these models
assume individual dynamics that are linear, [6] uses the (nonlinear)
natural Frenet equations of motion, with gyroscopic control of the
curvature (steering); in this context steering laws are devised to
achieve stabilization to either rectilinear or circular motion. These
control laws are useful for artificial formations but there is no
evidence that they are biologically plausible and hence suitable
candidates for describing natural collectives.

An alternative approach to the design of coordinated motion
involves using pursuit laws as building blocks. A successful
example is given by the cyclic pursuit scheme, in which the i-th
element of a n-unit formation pursues the (i + 1)-th element,
modulo n (see for example [7] and [8]). In [8] cyclic pursuit with
a constant bearing pursuit law is used in the same mathematical
framework as [6] and is shown to produce (under appropriate
choices of the bearing angles) rectilinear and circular coordinated
motions, plus other interesting spiraling patterns. Since animal
species which display collective behavior are frequently also
very skilled in pursuit (and evasion) tasks, this approach seems
biologically plausible and might potentially provide insight into
natural collective phenomena.

A recurring pursuit strategy in nature is the so-called motion
camouflage, or constant absolute target direction, strategy, in which
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the pursuer approaches its target while maintaining constant
absolute direction of the baseline connecting the two positions.
For insects which navigate based on vision, such as hoverflies
and dragonflies, this allows the pursuer to minimize optical flow
produced in the visual field of the evader, making it difficult
for the latter to recognize that it is being chased [9] [10]. The
same pursuit strategy, though clearly with different biological
justifications, fits verywell the flight data collected on echolocating
bats capturing prey insects [11]. Gyroscopic curvature laws that
implement the motion camouflage strategy have been discussed
in [12] and in [13] for the planar and the three-dimensional setting
respectively. In support of the claim that these control laws are
biologically plausible, [14] reports high correlation between the
curvatures produced by a delayed (to account for sensorimotor
reaction times) version of the motion camouflage steering law,
and the actual trajectory curvatures extracted from videos of bats
pursuing insects.

In this paper we explore the coordinated motion that arises
in a two-unit system when each unit, moving at constant speed
in the plane, pursues the other using the motion camouflage
steering law introduced in [12]. This case, which we refer to as
Mutual Motion Camouflage, is a simple instance of cyclic pursuit
and its analysis constitutes an important step towards designing
collective behavior based on motion camouflage. The planar
dynamics studied here have a natural extension to the three-
dimensional setting [15], and certain types of ‘‘swarming’’ motion
for an arbitrary number of units can be generated from Mutual
Motion Camouflage, as shown in [16].

In the literature on the field biology of dragonflies, there
are detailed descriptions on the behavior of dragonflies engaged
in aggressive territorial battles (see [17], pages 441–449). The
trajectories in such engagements, analyzed from video recordings,
display both planar co-orbiting and well-synchronized downward
spiraling, consistent with Mutual Motion Camouflage in the plane
(as in this paper) and in three dimensions (as in [15]). Since
dragonflies are highly visual insects, one might speculate that
such behavior ensues from visually guided strategies such as
motion camouflage, but justifying such a claim demands detailed
neurophysiological experiments that are yet to be done.

The richness of the trajectories generated by Mutual Motion
Camouflage can also be exploited to solve certain coverage path-
planning problems, as we show in [18]. While earlier works, such
as [19], considered problems of deployment of multiple vehicles
to locations that satisfy certain static coverage-related optimality
criteria, the present work suggests that one might exploit simple
control laws for as few as 2 cooperating agents (vehicles)
to provide a dynamic (spatially and temporally intermittent)
coverage through a mechanism of space filling curves. The idea of
space-filling curves is classical, harking back to the dense winding
line on a torus and similar constructs. While we do not make any
quantitative comparisons along these lines, the simplicity of our
mechanism is perhaps an attractive feature.

The paper is organized as follows. After introducing the model
and a convenient formulation of the dynamics in Section 2,
we derive the motion patterns generated by Mutual Motion
Camouflage in Sections 3–5 using reduction by symmetry, phase
portrait properties and reconstruction. The motion patterns are
typically characterizedby thedistance between twoagents varying
periodically between extrema. This is analogous to the elliptical
orbits of the Kepler problem of two particles moving undermutual
gravitational attraction [20]. In Section 6 we further elaborate on
the analogy to show that it is due to an interesting Lagrangian
structure in Mutual Motion Camouflage, which is in some sense
similar to the classical Lagrangian structure of the Kepler problem.

Fig. 1. Relevant vectors for the analysis of the relative motion (r, g,h) and the
center of mass motion (z, k, l).

2. The Mutual Motion Camouflage model

We consider a system with two units, each one modeled as a
unit-mass particlemoving inR2, itsmotion described by the planar
natural Frenet frame equations [21,12]:

ṙi = νixi
ẋi = νiuiyi
ẏi = −νiuixi.

(1)

Here xi is the unit-tangent vector to the trajectory of particle i
(i = 1, 2), assumed to be twice-differentiable, and yi = x⊥

i is its
counterclockwise rotation by π/2 radians. Each particle is subject
to curvature control ui, which affects its direction of motion but
not its speed νi, assumed constant. The mechanical interpretation
of this model is that the particles are subject only to gyroscopic
forces, which do not alter their kinetic energy.

We are interested in the dynamics of the coupled system when
the two particles are engaged in a mutual (reciprocal) pursuit,
meaning that each particle executes the same pursuit steering
law with the other one as the ‘‘target’’. Accounting for the fact
that the two particles may travel at different speeds, we translate
this mutual interaction in the following discrete symmetry for the
controls:

u1ν1 = u2ν2 = u. (2)

In studying the system composed by the pair of particles,
it is convenient to separate the relative motion between the
particles from the evolution of the pair with respect to the absolute
reference frame, described by themotion of the center of mass. For
the relativemotion analysis, we introduce the relative position and
velocity vectors r = r1−r2 and g = ν1x1−ν2x2; we also introduce
h = ν1y1 − ν2y2, which satisfies h = g⊥

= ṙ⊥ by the additivity
of vector rotation. For the center of mass, we introduce the scaled
position z = r1+r2 and velocityk = ν1x1+ν2x2;we also introduce
l = ν1y1 + ν2y2 = k⊥. These vectors are depicted in Fig. 1.

Under assumption (2), the equations of the coupled system are:

ṙ = g
ġ = uh
ḣ = −ug

(3)

ż = k
k̇ = ul
l̇ = −uk.

(4)

Remark 1. The model presented here is well defined (provided
the curvature control is finite) even if the speed of one of the
particles tends to zero (and its curvature tends to infinity), because
curvatures and speeds enter via multiplication in (1). As a limit
case, Eqs. (3)–(4) are also suitable to describe the motion of a
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