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In this paper, we derive the stochastic maximum principle for optimal control problems of the
forward-backward Markovian regime-switching system. The control system is described by for-
ward-backward SDEs and modulated by continuous-time, finite-state Markov chains. We first obtain
the necessary and sufficient conditions for the optimal control. Thereafter, we apply the maximum
principle to recursive utility investment-consumption problems and LQ problems with Markovian
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1. Introduction

The applications of a regime-switching model in finance and
stochastic control have received significant attention in recent
years. It performs better from the empirical point of view com-
pared to the traditional system based on the diffusion processes.
More specifically, it modulates the system with a continuous-
time finite-state Markov chain with each state represents a regime
of the system or a level of economic indicator. For example, in
the stock market, the up-trend volatility of a stock tends to be
smaller than its down-trend volatility (see Zhang [1]); there-
fore, it is reasonable to describe the market trends by a two-
states Markov chain. The optimal control problems with jump
Markov disturbances were first studied when the systems were
described without Gaussian noise, see for example, in [2,3]. With
the development of stochastic analysis and stochastic control
theory, much work has been done on stability and stochas-
tic control problems for the regime-switching system, such as
[4-7]. The regime-switching model in economic and finance fields
was first introduced by Hamilton in [8] to describe a time series
model and then intensively investigated in the past two decades
in mathematical finance. Based on the switching diffusion model,
much work has been done in the fields of option pricing, portfolio
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management, Markowitz’s mean-variance problem, risk manage-
ment, etc. (see examples such as [9-12]).

Maximum principle was first formulated by Pontryagin in the
1950s and it converted the optimization problems into maximizing
the corresponding Hamiltonian functions. Bismut [13] introduced
the linear backward stochastic differential equations (BSDEs) as
the adjoint equations, which was a milestone in the development
of this theory. The general stochastic maximum principle was
obtained by Peng in [14] by introducing the second order adjoint
equations, which allowed the control enter in both the drift and
diffusion coefficients while the control domain was nonconvex.
Donnelly [15] investigated the sufficient maximum principle for
the regime-switching model.

Pardoux and Peng proved the existence and uniqueness for the
solution of the nonlinear BSDEs in [ 16], which has been extensively
used in stochastic control and mathematical finance in the past
two decades; see [17-19]. Duffie and Epstein [20] (independent of
Pardoux and Peng) introduced the stochastic differential recursive
utility by a kind of BSDEs which was a generalization of the
standard additive utility. Generally, the recursive utility can be
viewed as the solution of a BSDE. Peng first introduced the
stochastic maximum principle for optimal control problems of
the forward-backward control system when the control domain
is convex in [21]. Dokuchaev and Zhou [22] studied a kind of
maximum principle when the system dynamics were controlled
BSDEs. Then, the forward-backward maximum principle was
generalized and applied in finance; for example, see [23-27] and
the references therein. In this paper, using the results about BSDEs
with Markov chains in [28,29], we derive both the necessary and
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sufficient maximum principle for the forward-backward regime-
switching model. To the authors’ knowledge, it is the first time to
investigate this system.

This paper is organized as follows. In Section 2, we give
the preliminaries about BSDEs with Markov chains and the
introductions to the optimal control problems. In Section 3, we
derive the necessary maximum principle as well as sufficient
optimality conditions. In Section 4, we give applications in
the recursive utility investment-consumption problems and LQ
problems with regime-switching.

2. Formulation of the optimal control problems

2.1. Preliminaries

Let (£2, #,P) be a probability space. T > O is a finite-time
horizon. {B;,0 < t < T} is a d-dimensional Brownian motion
and {o;, 0 < t < T} is a finite-state Markov chain with the state
space given by I = {1, 2,...,k}. The transition intensities are
A(,j) for i # j with A(i, j) nonnegative and bounded. A(i,i) =
- Zje,\m A(i, j). Let F = (%t)tepo,17 be the filtration generated by
{Bs, as; 0 < s < T} and augmented by all P-null sets of .%.

Now, we recall some preliminary results about the integer
random measure related to the Markov chain (see [28,29]); more
details about the general integer random measure can be found in
Jacod and Shiryaev [30].

Given an auxiliary measured space (E, %, p), Where p
is a nonnegative o-finite measure on (E, %Z). Let u = (u
(dy, de))¢efo,r1..ce be an integer-valued random measure on
([0, T] x E, ([0, T]) ® %). Denote & = 2 ® %, where &
is the predictable sigma field on £ x [0,T]. We assume
that the compensator of w is defined by ¢ (w, e)p(de)dt for a
Z-measurable nonnegative uniformly bounded (random) function
¢.Then, the compensatrix (compensated measure) is

fi(de, de) = pu(dt, de) — ¢i(w, e)p(de)dt.

In the following parts, by default, all equalities are assumed to
be dP-a.s., dP ® dt-a.e. or dP ® dt ® {dp-a.e.
We also make the following notations.

e | - |, the Euclidean norm in R™, the inner product is denoted
by (-).

e .#,, the set of measurable functions from (E, %, p) to R
endowed with the topology of convergence in measure.

e Forv € .#,, define

1/2
[vl; = U v(e)ch(e)p(de)] € Ry U {+o00}. (M
E

° iﬂdz, the space of square integrable R%-valued .#;-measurable
random variable &, s.t.

IEI = (EE*)'? < +oo.

° Sg, the space of R4-valued cadldg process Y s.t.

1/p
IYllsp = (E L:[L(l)pn IY[I”D < +o00.

e 7}, the space of R'*¢-valued predictable processes Z s.t.

T 1/2
1Z1l 2 = (E [/ |zt|2c|rD < 400.
0

° /‘6#2 the space of P-measurable functions V : £ x [0, T]XE —
Rs.t.

T 1/2
IVilez = (E [/ |v[|?dt])
0
T 1/2
_ (E [ / / v[(e)zzt(e)p(de)dt])
0 E

< 4o00. (2)

Remark 2.1. Itis noted that all the above spaces are Banach spaces.

Consider the following BSDEs,

—dY, =g(t,Y;, Z;, Vy)dt — Z,dB, — V,(e)ji(ds, de),
{YT iy (3)
whereg : 2 x [0, T] x R x R™? x .7, — Rand foranyy € R,
zeR™ ye My, &(t, Y, z,v) is progressively measurable.

We make the following assumptions.

(H1)£ e I2.(H2) |lg(-, 0, 0, 0)||%,1z < +o00.

(H3) g is Lipschitz continuous with respect to (y, z, v) in the
sense that forany t € [0, T] and (y, z, v), (/, 72/, v') € R x R'*4
X My,

|g(t5ya z, U) _g(tay/v Z/, U/)|
<Cly=Yl+lz=21+v="2"1). (4)

Lemma 2.2 (/28]). Under the assumptions (H1)-(H3), there exists a
unique solution (Y, Z, Vi) € (S2 x #;} x ) for the BSDEs (3).

Now we consider the random measure of Markov chains. The
auxiliary measured space is (I, %, p), where [ is the state space of
Markov chain o4, 4 is the sigma field of I, p is defined by p(dj) = 1
forj e l.

Define ¥ as the integer-valued random measure on ([0, T] X
I, (0, T] ® %)) which counts the jumps 7 (j) from « to state j
between time 0 and t. The compensator of ¥ (j) is (¢ A (o, j)dt,
which means d7;(j) — Ty, zjA(a, Hdt = d# (j) is a martingale
(compensated measure). Then canonical special semimartingale
representation for « is given by

dog = ) Aew, )G — a)dt + )G — o )dT ().

jel jel
Denote n;(j) = T £jA(, j). By a slight abuse of notation, we
denote .7, = ((, %, p); R). Then the norms (1) and (2) of .#,
and t%‘f,z, corresponding to the random measure of Markov chains
are

Wl =Y [v()?ne()]”* € By U {00}, (5)
Jjel
T 1/2
IVl 2 = (E [ / vamznto)er < +o0, (6)
0 Jjel

and the BSDEs with Markov chains are of the form:
—dY; =g(t,Y;, Z;, Vy)dt — Z,dB; — Z Vt(i)d%(j),

jel
Yr = £.

2.2. Formulation of the problems

We will consider optimal control problems of the following
stochastic control system, which is a coupled forward-backward
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