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Abstract

This paper studies the relations between the local minima of a cost function f and the stable equilibria of the gradient descent flow of f.
In particular, it is shown that, under the assumption that f is real analytic, local minimality is necessary and sufficient for stability. Under the
weaker assumption that f is indefinitely continuously differentiable, local minimality is neither necessary nor sufficient for stability.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Gradient flows are useful in solving various optimization-
related problems. Recent examples deal with principal com-
ponent analysis [21,15], optimal control [20,9], balanced
realizations [7], ocean sampling [3], noise reduction [16], pose
estimation [4] or the Procrustes problem [18]. The underlying
idea is that the gradient-descent flow will converge to a local
minimum of the cost function. It is, however, well known that
this property does not hold in general: the initial condition can,
e.g. belong to the stable manifold of a saddle point. Not as well
known is the fact that, even assuming that the cost function is
a C∞ function, the local minima of the cost function are not
necessarily stable equilibria of the gradient-descent system,
and vice versa. The main purpose of this paper is to shed some
light on this issue.
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Specifically, let f be a real, continuously differentiable func-
tion on Rn and consider the continuous-time gradient-descent
system

ẋ(t) = −∇f (x(t)), (1)

where ∇f (x) denotes the Euclidean gradient of f at x. Define
stability and minimality in the standard way:

Definition 1. A point z ∈ Rn is a local minimum of f if there
exists � > 0 such that f (x)�f (z) for all x such that ‖x−z‖ < �.
If f (x) > f (z) for all x such that 0 < ‖x − z‖ < �, then z is
a strict local minimum of f. An equilibrium point z of (1) is
(Lyapunov) stable if, for each � > 0, there is � = �(�) > 0 such
that

‖x(0) − z‖ < � ⇒ ‖x(t) − z‖ < � ∀t �0.

It is asymptotically stable if it is stable, and � can be chosen
such that ‖x(0)‖ < � ⇒ limt→∞ x(t) = z.

Then we have:

Proposition 2. (i) There exist a function f ∈ C∞ and a point
z ∈ Rn such that z is a local minimum of f and z is not a stable
equilibrium point of (1). (ii) There exist a function f ∈ C∞
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and a point z ∈ Rn such that z is not a local minimum of f
and z is a stable equilibrium point of (1).

The proof given in Section 2 consists in producing functions
f that satisfy the required properties.

After smoothness, the next stronger condition one may
think of imposing on the cost function f is real analyticity (a
real function is analytic if it possesses derivatives of all or-
ders and agrees with its Taylor series in the neighbourhood of
every point). The main result of this paper is that under the
analyticity assumption, local minimality becomes a necessary
and sufficient condition for stability.

Theorem 3 (Main result). Let f be real analytic in a neigh-
bourhood of z ∈ Rn. Then, z is a stable equilibrium point of
(1) if and only if it is a local minimum of f.

The proof of this theorem, given in Section 3, relies on an
inequality by Łojasiewicz that yields bounds on the length of
solution curves of the gradient system (1).

Moreover, we give in Section 4 a complete characteriza-
tion of the relations between (isolated, strict) local minima and
(asymptotically) stable equilibria for gradient flows of both
C∞ and analytic cost functions. Final remarks are presented in
Section 5.

2. Smooth cost function

In this section we prove Proposition 2. Consider f : Rn →
R defined by

f (x, y) = 1

1 + x2 g(y)h(y), (2)

where

g(y) =
{

e−1/y2
if y 
= 0,

0 if y = 0,
(3)

and

h(y) =
⎧⎨
⎩

y2 + 1 + sin
1

y2 if y 
= 0,

1 if y = 0.

This function is qualitatively illustrated in Fig. 1. We show that
this function f satisfies the properties of point (i) of Proposition
2 with z = (0, 0). It is routine to check that f ∈ C∞, and
it is clear that the origin is a local minimum of f, since f is
nonnegative and f (0) = 0. The gradient system (1) becomes

ẋ = 2x

(1 + x2)2 g(y)h(y), (4a)

ẏ = − 1

1 + x2

g(y)

y3 m(y), (4b)

where m(y) = 1 + sin 1/y2 − 2 cos 1/y2 + y2 + 2y4. Let
(x(t), y(t)) be the solution trajectory of (4) with initial
conditions (x(0), y(0)) = (x0, y0) where we pick y0 > 0
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Fig. 1. Plots of f (x, y) along the line x = 0 (above) and y = 0.4 (below).
The function f is the one in (2), where g(y) has been replaced by y2 for
clarity of the illustration.

and x0 > 0. Then there exists y1 such that 0 < y1 < y0 and
m(y1) = 0. Therefore, y(t) > y1 for all t. Then from (4a),
ẋ > (2x/(1 + x2)2)g(y1)y

2
1 whence limt→+∞ x(t) = +∞. We

have shown that from an initial point arbitrarily close to the
origin the solution of (4) escapes to infinity. That is, the origin
is not a stable equilibrium point of (4).

Point (ii) of Proposition 2 is easier to show. Take f : R → R

given by

f (x) =
⎧⎨
⎩g(x) sin

1

x
if x 
= 0,

0 if x = 0,

(5)

where the function g is given by (3). This function f has (in-
finitely many) local minima in any neighbourhood of x = 0.
Since solution trajectories of (1) are bounded by the local min-
ima, it follows that x = 0 is a Lyapunov stable point of (1); yet
x = 0 is not a local minimum of f.

Notice that both functions f defined in (2) and (5) are nonan-
alytic at the origin. This is not coincidental in view of Theorem
3 which we prove in the next section.

3. Analytic cost function

This section is dedicated to proving Theorem 3. We assume
throughout, without loss of generality, that f : Rn → R is
analytic on an open set U containing the origin, that f (0) = 0
and that ∇f (0)=0, and we study the stability of the equilibrium
point 0 of the gradient system (1).

The proof relies on the following fundamental property of
analytic functions.

Lemma 4 (Lojasiewicz’s inequality). Let f be a real ana-
lytic function on a neighbourhood of z in Rn. Then there are
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