Systems & Control Letters 59 (2010) 760-766

journal homepage: www.elsevier.com/locate/sysconle

Contents lists available at ScienceDirect

Systems & Control Letters

An actor-critic algorithm with function approximation for discounted cost

constrained Markov decision processes
Shalabh Bhatnagar

Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India

ARTICLE INFO ABSTRACT

Article history:

Received 20 July 2010

Received in revised form

24 August 2010

Accepted 24 August 2010
Available online 8 October 2010

We develop in this article the first actor-critic reinforcement learning algorithm with function
approximation for a problem of control under multiple inequality constraints. We consider the infinite
horizon discounted cost framework in which both the objective and the constraint functions are suitable
expected policy-dependent discounted sums of certain sample path functions. We apply the Lagrange
multiplier method to handle the inequality constraints. Our algorithm makes use of multi-timescale

stochastic approximation and incorporates a temporal difference (TD) critic and an actor that makes a
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gradient search in the space of policy parameters using efficient simultaneous perturbation stochastic
approximation (SPSA) gradient estimates. We prove the asymptotic almost sure convergence of our
algorithm to a locally optimal policy.
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1. Introduction

The problem that we are concerned with in this article is
of finding an optimal policy for a constrained Markov decision
process (C-MDP) when (a) the transition probabilities are not
known and (b) a feature-based representation is used. The
latter is particularly useful when the state and action spaces
are large or unmanageable. A text book treatment of C-MDP
can be found in [1]. Reinforcement learning (RL) [2,3] has
proved to be a useful paradigm for such problems and has
largely been studied in the case of regular (unconstrained)
Markov decision processes (MDP) [4,5]. Algorithms based on
both value and policy iteration techniques have been developed
and studied in this scenario. Actor-critic algorithms [6,7] are
a class of RL algorithms that are based on the policy iteration
method. Whereas the critic addresses a problem of prediction
by estimating the value function for a given policy update,
the actor updates the policy itself and is concerned with the
problem of control. Temporal difference (TD) learning [3,8]
has been found to be one of the most effective methods for the
problem of prediction. For the problem of control, policy gradient
methods [9] have been successfully applied. The policy in these
methods is represented via a parameterized class of functions
that are differentiable in the parameter. In actor—critic algorithms
based on policy gradients, the actor’s parameter is updated along
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the direction of the performance gradient. The performance itself,
for any given parameter update, is estimated by the critic.

In this paper we present an actor—critic algorithm with function
approximation for a C-MDP and prove its convergence. Our
aim is to find an optimal policy that minimizes an infinite
horizon discounted cost function subject to prescribed bounds on
additional cost functions under that policy. The (above) additional
cost functions have a similar structure to the objective function
itself i.e., they are also expected discounted sums of some
other single-stage cost functions. Thus cost functions in both
the objective and the constraints are policy dependent. It is also
important to note that the value functions corresponding to the
single-stage costs cannot in general be analytically determined as
functions of the parameter. Hence the constraint set is a priori not
properly defined as well. Thus any solution methodology cannot
be based on directly projecting iterates after each update to the
constraint set formed from the inequality constraints.

Constrained MDPs find immense applications in many domains.
For instance, in communication networks, a problem of interest
is to maximize the throughput (i.e., the rate at which packets are
delivered to the destination) subject to constraints on the delay as
well as packet loss in transmission, see [ 10,11]. One can find similar
important problems in many other domains.

Our development is based on forming the Lagrangian by in-
corporating the (multiple) inequality constraints in the objective.
The primal is a new actor—critic algorithm that combines ideas
from temporal difference learning, policy gradient methods and si-
multaneous perturbation stochastic approximation (SPSA) [12,13]
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while the dual corresponds to a recursive search in the space of La-
grange multipliers. A Lagrange based approach for solving a C-MDP
with a single constraint has been used in [14]. The algorithm there
however works for the look-up table case and does not use function
approximation i.e., it requires storage of all the states and actions,
and performs updates in the space of all randomized policies. Fur-
ther, it has been designed for the long-run average cost objective
and not the discounted cost. We use feature based representations
as aresult of which our problem becomes one of optimizing param-
eters in a constrained optimization setting. We consider multiple
inequality constraints and the infinite horizon discounted cost cri-
terion. Ours is the first work that develops an actor-critic algorithm
with function approximation for control with multiple inequality
constraints and under the discounted cost objective.

The rest of the paper is organized as follows: in Section 2,
we present the framework and problem formulation. We present
in Section 3 our constrained actor-critic algorithm. In Section 4,
we present the convergence proof. Finally, Section 5 contains the
concluding remarks.

2. The framework and problem formulation

By a MDP we mean a stochastic process {X;} taking values in a
set S (called the state space), that is governed by a control sequence
{Z,} and satisfies the controlled Markov property (below). Let A(i)

be the set of feasible actions in state i and A = Uies A(i) be the set
of all actions or the action space. We assume that both S and A are
finite sets. The controlled Markov property satisfied by {X;} is the
following:

P(X?H-] =] | XmaZmy m= n) = p(Xﬂ7Zn7j) a.s.,

wherep : S x A xS — [0,1] is a given function for which
Zjes p(i, a,j) = 1,Va € A(i), i € S.

A policy is a decision rule for selecting actions. We call & £
{uo, 1, ...}, where u, : S — A, an admissible policy when
un(i) € A@{) Vi € S.When u, = u,Vn > 0, where u is
independent of n, we call 7 or many times p itself a stationary
deterministic policy (SDP). A stationary randomized policy (SRP)
7 is specified via a probability distribution 7 (i, -) over A(i), Vi € S.
It is easy to see that under any given SDP or SRP, {X,} is a Markov
chain. We make the following assumption:

Assumption 1. The Markov chain {X,} under any SRP m is
irreducible.

It follows from Assumption 1 that {X,,} is also positive recurrent un-
der any SRP because S is a finite set. Let c(n), g1 (n), ..., gyv(n), n >
0 denote certain single-stage costs that we assume are non-
negative, real-valued, uniformly bounded and mutually indepen-
dent random variables. In addition, given the current state and
action (X, and Z,), c(n), gk(n), k = 1, ..., N are conditionally in-
dependent of the previous states and actions (Xi;, Zm, m < n).
The evolution in a C-MDP proceeds as follows: at instant n, the
state X, is observed and action Z, is chosen. This results in the
(N + 1)-length string of costs c(n), g1(n), ..., gv(n) and the pro-
cess moves to a new state X, at instant n + 1. Let c(i, a), g (i, a)
be defined via c(i,a) = E[c(n) | X, = i,Z, = a], gk(i,a) =
Elgi(n) | X, = i,Z, = a],Vn > 0,k = 1,..., N, respectively.
(Note the abuse of notation here.) It is shown in Theorem 3.1 of [1]
that SRPs correspond to a complete class of policies for the prob-
lem that we consider, i.e., it is sufficient to find an optimal policy
within the class of SRPs. Under an SRP 7, let d” (i) denote the sta-
tionary probability of the Markov process being in state i € S and

letd™ 2 (@7 (i), i S)T.

Our aim is to find a SRP that for a given initial distribution g
(over states), minimizes (over all SRPs 1) the discounted cost

V) =) BOUT (), (1)
ieS

subject to the constraints

S = BOWE () < o, 2)
ieS

k=1,...,N.Here

UT() = E [Z y"em) | Xo = i,n} :

m=0
(o]
Wi (i) = E [Z y"g(m) | Xo =1, n} :
m=0
k=1,...,N.Here 0 < y < 1isa given discount factor. Also, in
(2), a1, . .., ay are given positive constants. We assume that there

exists at least one SRP 7t for which all the inequality constraints (2)
are satisfied. Under this requirement, it is shown in Theorem 3.8
of [1] that an optimal SRP 7 * that uses at most N randomizations
exists. The constraints (2) can be alternatively written as

A
Gy () = S{ () — e <0, (3)
k=1,...,N.
LetA = (A,..., Ay) ' denote the vector of Lagrange multipli-
ersiq, ..., Ay € Rt U{0}andlet LA (v, 1) denote the Lagrangian
B N
L 2y =17 (1) + ) MG (). (4)

k=1
For a relaxed MDP problem for which the single-stage cost is

c(i,a) + zﬁ;l Me(gk(i, @) — o) in state i when the action chosen
is a, the Bellman equation for optimality corresponds to

k=1

_ N
V(i) = min (c(i, 0+ Y dlgel. @) — o)

+ v Y pl.. a)v%)) : (5)

jes

for alli € S, where V**(-) denotes the value function for a given
vector A of Lagrange parameters. Further, let V™*(-) denote the
value function under a given SRP 7 and Lagrange parameters A.
The Poisson equation in this case corresponds to

_ N
viii) = ) (i, a) (c(i, @)+ Y he(gili, @) — o)

acA(i) k=1

+ vy _pGj, a)v“o')) : (6)

Jjes

Vi € S. The solutions V*'X(-) and V”’X(-) to (5) and (6) respectively
can both be seen to be unique [4,5].
In what follows, we shall restrict our attention to SRPs

that depend on a parameter 6 E ©1,...,007 and consider
an analogous problem of finding the optimum (6, A)-tuple. Let
{7%@,a), i €S, a e A®), 6 € C C RY}denote the parameterized
class of SRP. Here, the set C in which 6 takes values is assumed to
be a compact and convex subset of R¢. From now on, 7 itself will
represent the parameterized SRP 7. The following is a standard
requirement in policy gradient methods.
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