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a b s t r a c t

This paper studies the target aggregation problem for a class of nonlinear multi-agent systems with the
time varying interconnection topology. The general neighboring rule-based linear cooperative protocol
is developed and a sufficient aggregation condition is derived. Moreover, it is shown that in the presence
of agent faults, the target point is still reached by adjusting some weights of the cooperative protocol
without changing the structure of the topology. An unmanned aerial vehicle team example illustrates the
efficiency of the proposed approach.
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1. Introduction

The study of information flow and interaction among multiple
agents in a group is motivated by the coordination problemwhere
the states of all agents are desired to satisfy some requirements,
e.g., reach a common point/region, follow some reference signals,
etc. Cooperative control aims at designing appropriate protocols
such that the group of agents meets those coordination require-
ments with the shared information.

Coordination problems have recently been addressed for linear
multi-agent systems (MAS) using graph theory [1–4], matrix-
theoretical and optimal control based methods [5,6], to name a
few. As for MAS with nonlinear dynamics, the stability of discrete
nonlinear agents with convex dynamics and variable connection
topology is analyzed in [7] based on graph theory and discrete set-
valued Lyapunov functions. This result is extended to continuous-
time coupled nonlinear systems in [8], while [9] discusses the
coordination for a class of nonlinear MAS based on the limit set
approach. The matrix-theoretical approach in [5] is extended to
the affine nonlinear case in [10], where a class of cooperative
controllers are provided under assumptions on a set of Lyapunov
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function components. Ref. [11] utilizes a model predictive control
approach to solve the coordination problem.

On the other hand, faults in automated processes often cause
undesired reactions. Fault diagnosis and fault tolerant control
(FTC) are highly required for modern complex control systems
[12–16]. Twomain kinds of faults can be considered forMAS: Agent
faults that change the dynamics of the agent and Connection faults
that affect the connection topology. Note that variable connection
topology has been fully considered in the literature, a connection
fault being just a reason to change the topology. Therefore, we
are more interested in agent faults. However, until now, few
work has been devoted to FTC of MAS, e.g., Ref. [17] analyzes
the coordination behavior of linear MAS in the presence of agent
actuator faults. In [18], various MAS structures are developed and
discussed for the fault tolerance purpose.

In this paper, we focus on a kind of target aggregation problems,
namely the states of all nonlinear agents are required to reach a
common point, for a class of nonlinear MAS with the time varying
interconnection topology. To the best of our knowledge, there has
been no reported result along this direction prior to this work. We
first develop the general neighboring rule-based linear cooperative
protocol for the considered nonlinearMAS, and provide a sufficient
target aggregation condition based on graph theory. Then we
propose a novel FTC algorithm such that the target point is still
reached in spite of agent faults.

The rest of the paper is organized as follows: Section 2 gives
some preliminaries. Section 3 addresses the target aggregation
issue. Section 4 discusses the FTC problem. An unmanned
aerial vehicle team example illustrates the theoretical results in
Section 5, followed by some concluding remarks in Section 6.
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2. Preliminaries

2.1. Notations in graph theory

We first introduce some concepts and notations in graph theory
that will be used throughout this paper. A directed graph (digraph
for short) is denoted as G = (N , E), where N = {1, 2, . . . , n}
is the set of nodes and E is the set of arcs, (j, i) ∈ E denotes an
arc from node j to node i. A path in G from node i0 to node ik is
a sequence of arcs (i0, i1)(i1, i2) · · · (ik−1, ik), where nodes iι ∈ N
and arcs (iι, iι+1) ∈ E, ι = 0, 1, . . . , k − 1, k ≥ 1. If there exists a
path from node j to node i, then node i is said to be reachable from
node j.

A dynamic digraph is denoted as Gσ(t) = (N , Eσ(t)), where
σ : [0, ∞) → M = {1, 2, . . . ,m} is a switching signal. This
means that within the same node set, there arem possible arc sets.
G([t1, t2)) , (N , ∪t∈[t1,t2) Eσ(t)) denotes the joint digraph in the
time interval [t1, t2) with t1 < t2. If node j is reachable from node
i in the joint digraph G([t1, t2)), then node j is said to be jointly
reachable from node i in [t1, t2). If for all t ≥ 0, there exists a
constant Tt > 0 such that node j is jointly reachable from node i
in [t, t + Tt), then node j is uniformly reachable from node i.

2.2. Problem formulation

Consider a multi-agent system with n agents where the
interconnection topology switches betweenm different topologies
corresponding to M. The connection behavior can be naturally
described by a dynamic digraph Gσ(t), where node i models agent
i, an arc (j, i) indicates that agent j is a neighbor of agent i in the
sense that agent i can obtain directly the information from agent
j. To avoid arbitrarily fast switching, we assume that each interval
during which the topology does not change is not less than τ for
τ > 0 [19,20].

The dynamics of agents are given as:

ẋi = fi(xi) +

−
j∈Ni(t)

aij(t)(xj − xi)  
uci

, i ∈ N = {1, 2, . . . , n} (1)

where for agent i, xi ∈ ℜ
p is the measurable state, fi is a smooth

function representing its self dynamic, uc
i is the cooperative law,

which takes the general linear cooperative protocol [2,3]. Ni(t)
denotes the neighbor set of agent i at t . aij(t) is theweight between
agents i and j defined as

aij(t) =


a⋆
ij if j ∈ Ni(t)
0 otherwise

where a⋆
ij is a positive constant. In the following, we will write aij

instead of aij(t) if there is no confusion.
Given a target point denoted as a constant vector ξ ∈ ℜ

p, define
Vi , (xi − ξ)⊤P(xi − ξ) for i ∈ N , where P ∈ ℜ

p×p is a symmetric
positive definitematrix. Vi is a potential function that evaluates the
distance between the target point and agent i. It is obvious that Vi
is continuously differentiable and nonnegative, Vi = 0 if and only
if xi = ξ .

Suppose that there exists a partition of the set of agents N =

Na ∪ Np ∪ Nf , where Na is an active agents set, Np is passive agents
set1 and Nf is a faulty agents set such that:

∀i ∈ Na ⇒
∂Vi

∂xi
fi(xi) ≤ −λiVi, λi > 0 is a constant (2)

1 Active agent and passive agent are also called ‘‘leader’’ and ‘‘follower’’
respectively in some literatures.

∀i ∈ Np ⇒
∂Vi

∂xi
fi(xi) = 0 (3)

∀i ∈ Nf ⇒
∂Vi

∂xi
fi(xi) ≤ δiVi, δi > 0 is a constant. (4)

Inequality (2) means that active agents have information about
the target ξ , and are able to asymptotically reach ξ by their own
means. Passive agents have no information of ξ , therefore, they can
just stay in place without cooperation as in (3).

Consider faults that occur in an agent (active or passive),
e.g., internal equipment fault, parameter deviation, etc. Inequality
(4) means that the potential function of faulty agents may behave
in both ways, increasing and/or decreasing. These agents may not
reach ξ or keep a constant distance with ξ , but may run far away
from ξ .

Many results on FTC of nonlinear systems have been reported,
e.g., [13,14,21]. If all agents have the target information, we
can change all passive and faulty agents into active ones, via
the redesign of their self-controllers without cooperation with
other agents. However, since only active agents have the target
information, it is moremeaningful for MAS to analyze whether the
target point could be reached by using cooperative law uc

i only.
In this paper, the problem to be solved is to let the states of all

agents (1) satisfying (2)–(4)with Na ≠ ∅ reach the target point ξ by
using uc

i in the presence of a switching topology.

3. Cooperative control design

In this section, we focus on the cooperative control design with
active and passive agents, based onwhich the fault tolerant control
issue will be addressed in Section 4.

Theorem 1. Consider a system (1)whereN = Na∪Np andNa ≠ ∅.
The cooperative law uc

i with arbitrary a⋆
ij > 0 leads to limt→∞ xi(t) =

ξ, ∀i ∈ N , ∀xi(0) ∈ ℜ
p if in Gσ(t) each passive agent is uniformly

reachable from at least one active agent.

In order to prove Theorem 1, we need the following result.
Consider an infinite sequence of nonempty, bounded, and

contiguous time intervals

[t̄0, t̄1), [t̄1, t̄2), . . . (5)
with t̄0 = 0 and t̄k+1 − t̄k ≤ T , k = 0, 1, . . . for some constant
T > 0. Suppose in each interval [t̄k, t̄k+1) there is a sequence of
non-overlapping subintervals
[tk0 , tk1), . . . , [tkj , tkj+1), . . . , [tkmk−1 , tkmk

),

where t̄k = tk0 , t̄k+1 = tkmk
(6)

satisfying tkj+1 − tkj ≥ τ , 0 ≤ j < mk for τ > 0 such that during
each subinterval [tkj , tkj+1), the static digraph Gσ(tkj )

is activated.
Denote ∆kj = tkj+1 − tkj .

Lemma 1 ([3]). Consider a MAS with n agents and m possible
interconnection topologies, whose dynamics are ẋi =

∑
j∈Ni(t)

aij(xj−
xi) which can be written in matrix form

ẋ(t) = Cσ(t)x(t).

For a constant ∆ > 0 and i = 1, 2, . . . ,m, it holds that eCi∆
is a nonnegative matrix with positive diagonal elements. If there
exists an infinite sequence of contiguous, uniformly bounded time
intervals satisfying (5)–(6), and across each interval [t̄k, t̄k+1), the
joint digraph G([t̄k, t̄k+1)) has a rooted directed spanning tree,2 then
limt→∞ x1(t) = limt→∞ x2(t) = · · · = limt→∞ xn(t). �

2 A spanning tree of a directed graph is a directed tree formed by graph edges
that connect all the nodes of the graph [3].
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