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1. Introduction

Multiagent networked systems cover a very broad spectrum
of applications including cooperative control of unmanned air
vehicles, autonomous underwater vehicles, distributed sensor
networks, air and ground transportation systems, swarms of
air and space vehicle formations, and congestion control in
communication networks, to cite but a few examples. A unique
feature of the closed-loop dynamics under any control algorithm in
multiagent networks is the existence of a continuum of equilibria
representing a desired state of convergence. For example, the
consensus problem [1-3] requires all the states in the multiagent
network achieve the same value eventually. But this value is not
determined a priori. Under such dynamics, the desired limiting
state is not determined completely by the system dynamics,
but depends on the initial system state as well [2,3]. In such
systems possessing a continuum of equilibria, semistability, and
not asymptotic stability, is the relevant notion of stability [2,3].
Semistability is the property whereby every trajectory that starts
in a neighborhood of a Lyapunov stable equilibrium converges to
a (possibly different) Lyapunov stable equilibrium. Semistability
then implies Lyapunov stability, and is implied by asymptotic
stability. Thus, to design a control algorithm to achieve cooperative
tasks like consensus for multiagent systems, one has to incorporate
the notion of semistability into the controller design so that a stable
multiagent system is guaranteed [4].

Semistability was first introduced in [5] for linear systems,
and applied to matrix second-order systems in [6]. Nonlinear
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extensions were considered in [7,8], which give several stability
results for systems having a continuum of equilibria based on
nontangency and arc length of trajectories, respectively. Refs. [2,3]
build on the results of [7,8] and give semistable stabilization results
for nonlinear network dynamical systems. Optimal semistable
stabilization, however, has never been considered in the literature.

One may argue that for a linear system, the case of continuum
of equilibria can only arise when the system matrix is singular. But
this is not the generic case, because any perturbations would make
a singular matrix to be nonsingular. That is, given a constant linear
system in real case, the probability for it to be a type singular is
zero. So, it is of less practical interest to consider such a very special
case. We argue that this statement is not true for a large class of
linear systems which come from multiagent consensus problems.
We detail our presentation in Section 2 to show that this special
case is indeed practically important and the controller design
associated with such a case is worth a thorough investigation due
to its complex nature shown in three examples in Section 3.

In this paper, we develop a new #, optimal semistable
control framework for linear dynamical systems. Specifically,
necessary and sufficient conditions based on the new notion
of weak semiobservability for the existence of solutions to the
semistable Lyapunov equation are derived. Unlike the standard #¢,
optimal control problem, a complicating feature of the #¢, optimal
semistable control problem is that the semistable Lyapunov
equation can admit multiple solutions. We characterize all the
solutions using matrix analysis tools. With this theory, we present
a new framework to design J¢, optimal semistable controllers for
linear coupled systems by converting the original optimal control
problem into a convex optimization problem. It is important to
note that the proposed semistable control framework is different


http://dx.doi.org/10.1016/j.sysconle.2011.02.006
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:qing.hui@ttu.edu
http://dx.doi.org/10.1016/j.sysconle.2011.02.006

Q. Hui / Systems & Control Letters 60 (2011) 278-284 279

from the traditional servo control mechanism since we do not
use the error signal to serve as a feedback signal in the closed-
loop system. Furthermore, the results of this paper are the initial
step towards analysis and synthesis of linear systems having a
continuum of equilibria, which could be viewed as an alternative,
but not more general method to those approaches in [9,10].

The rest of the paper is organized as follows. Section 3
gives the formulation of the optimal semistable control problem
and its well-posedness problem by illustrating three interesting
examples. It follows from these three examples that the complexity
of the well-posedness problem for optimal semistable control
is far beyond the current J¢, control theory. Section 4 first
explores necessary conditions for optimality and semistability of
linear systems. Based on these results, necessary and sufficient
conditions for semistability of linear systems are then developed
by introducing the notion of weak semiobservability in Section 4.
These necessary and sufficient conditions turn out to be the bridge
establishing the equivalent optimal semistable control problems.
The new convex optimization equivalent formulation is shown in
Section 5 in which an equivalent nonconvex optimization problem
and an equivalent convex optimization problem are proposed.
Finally, some concluding remarks are provided in Section 6.

2. Perturbation to a linear system with a continuum of
equilibria: the drifting phenomenon

In this section, we use a linear consensus protocol with
imperfect information as an example to show that linear systems
with singular matrices are indeed widespread in multiagent
coordination and perturbation to these systems has a serious effect
on stability. Specifically, we will illustrate one particular serious
consequence of imperfect information that can cause agent-based
networks to become unbounded even when the corresponding
network with perfect communication is bounded. This study was
initiated in [11].

Consider a networked multiagent system consisting of n agents,
whose dynamics are ¥; = u;, where x; € R is the state and u; is
the control input. The agents can communicate with each other
according to a graph G (also called a topology of the network) such
that two agents can exchange information only if there is an edge
between them. Denote by ; the neighborhood of agent i and by
[a;] the adjacency matrix of G. It is well known (see, e.g., [1])
that if the graph G is strongly connected and balanced, then under
the following distributed control law (also called a protocol in this
context):

up = Zaij(xj —Xi), (1)
JEN;

all the agents will asymptotically reach the same value such that
xi(t) — Xast — oo for some constant X (which depends on the
initial states of the agents). If that is the case, the protocol (1) is also
called a consensus protocol. When the consensus a is the average
of the states, a = % Z?:1 x;, the protocol is called the average
consensus protocol. There are also other variations [12,13] of the
average consensus protocol (1); it is referred to the paper [14] for
a survey of consensus algorithms and their applications.

An implicit assumption in the protocol (1), as in almost all of the
reported literature (e.g., [1,12,13,15,16]), is that the information
agent i received from agent j is perfectly x;. In this research,
we consider the situation where the information is not perfect
such that what agent i received from agent j is indeed x; +
wj, where wj is the uncertainty (agent i can still have the exact
X; because that information is readily available to agent i). The
source of uncertainty could come from physical communication
channels between the agents (such as noise of communication
channels) but it can also be a quantization error resulting from

converting real numbers into finite-bit data (for storing and digital
communication). For the sake of presentation, we assume that the
uncertainty w; is the same for all recipients of x; but in general,
we can have different wj; for different communication links. In the
presence of the uncertainty wj, the Eq. (1) becomes

U = Z(Xj + wj — X,’).

JEN;
The collective dynamics of the network is
X = —Lx — Aw (2)

where x = [X1, ..., X;]" is the state vector, w = [wq, ..., w,]" is
the uncertainty, and L is the Laplacian and A is the adjacency matrix
of G. Because L has zero eigenvalue, the system with w = 0 is only
marginally stable, and in the presence of a bounded w, the state x
could go to infinity. Another way to see this drifting phenomenon
is to consider the dynamics of @ = ) ;_, x; = 1'x, where 11is the
vector whose elements are all 1. The dynamics of « are

& =1"(=Lx — Aw) = —1TAw (3)

since 17L = 0. Therefore, if fot 1TAw(s)ds — oo ast — oo, then
a(t) — ooast — oo.In particular, if 1"Aw is a nonzero constant
(one can always pick such a nonzero w since 1TAw is continuous
in w), no matter how small w is, it will grow unbounded and thus,
|x| = oc.

Thus, one has to be careful when designing control laws for
linear systems with a continuum of equilibria and it is absolutely
necessary to discuss optimal control of such systems.

3. Problem formulation

The notation we use in this paper is fairly standard. Specifically,
R (resp., C) denotes the set of real (resp., complex) numbers, R"
(resp., C") denotes the set of n x 1 real (resp., complex) column
vectors, R™™ (resp., C"™*™) denotes the set of n x m real (resp.,
complex) matrices, (-)T denotes transpose, (-)* denotes complex
conjugate transpose, (-)* denotes the group generalized inverse,
and I, or I denotes the n x n identity matrix. Furthermore, we write
|| - || for the Euclidean vector norm, R (A) and .~ (A) for the range
space and the null space of a matrix A, rank(A) for the rank of a
matrix A, spec(A) for the spectrum of the square matrix A, tr(-) for
the trace operator, and A > 0 (resp.,A > 0) to denote the fact that
the Hermitian matrix A is positive semidefinite (resp., definite).
Finally, we write B, (x),x € R", ¢ > 0, for the open ball with radius
& and center x, ® for the Kronecker product, & for the Kronecker
sum, and vec(-) for the column stacking operator.

In this paper, we consider q continuous-time linear systems 4,
i=1,2,...,q,givenby
xi(t) = Aixi(t) + Biu(t), t>0, (4)
where x;(t) € R" denotes states of the ith system, u;(t) € R™
denotes inputs of the ith system, A; € R™", and B; € R™™. Note
that this model includes both homogeneous systems [17] in which
all ;s are identical and heterogeneous systems [18] in which §;s are
different. We can rewrite the overall system as the compact form
X = Ax + Bu, (5)
where x 2 [x], ... x1" € R™, u = [ul,..., ug]T € R™M A 2
,Aql, and B £ block-diag[By, .. ., Bg].

x;(0) = xjo,

q
block-diag [A4, . ..

In this section, we consider the linear controller design u; = Kjx
so that the closed-loop system is semistable, that is, lim;_, o, X;(t) =
aj, i,= 1,2, ...,n, where ¢; is the final value determined by the
initial condition, and the cost function

I, o) = f [x(5) — )" Qx(s) — @)
0
+(u(s) — BYR((s) — B)1ds (6)
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