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Abstract

Min–max model predictive control (MMMPC) is one of the strategies proposed to control plants subject to bounded uncertainties. This
technique is very difficult to implement in real time because of the computation time required. Recently, the piecewise affine nature of this
control law has been proved for unconstrained linear systems with quadratic performance criterion. However, no algorithm to compute
the explicit form of the control law was given. This paper shows how to obtain this explicit form by means of a constructive algorithm.
An approximation to MMMPC in the presence of constraints is presented based on this algorithm.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Model predictive control (MPC) is one of the few con-
trol techniques able to cope with model uncertainties in an
explicit way [7]. One approach used in MPC when uncer-
tainties are present, is to minimize the objective function for
the worst possible case. This strategy is known as min–max
model predictive control (MMMPC) and was originally pro-
posed in [27] in the context of robust receding horizon con-
trol and in [8] in the context of robust MPC. All MMMPC
techniques for constrained and unconstrained linear uncer-
tain systems have a great computational burden in com-
mon (see [14,21,25]) which limits the range of processes to
which they can be applied. Few applications can be found in
literature even for slow dynamics or complex simulated
models (see [11,18]). In order to overcome the computa-
tional burden, several works have been proposed in the liter-
ature (see for example [12,13,23]). Even though, the imple-
mentation of robust MPC on real systems remain an open
question.
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It was shown in [5] that constrained MPC could be solved
using multiparametric linear or quadratic programming (de-
pending on the objective function). In this way an easily
implemented explicit solution can be obtained. These types
of results were extended to min–max controllers for linear
uncertain systems with l1 or l∞ norms in [4,10]. The piece-
wise affine nature for quadratic cost functions has also been
proved by other means in [19,20]. However, these works do
not include an algorithm to obtain the explicit form of the
control law.

This paper presents an algorithm that computes the ex-
plicit form of an unconstrained MMMPC controller with a
quadratic cost function. The range of processes to which,
in practice, these controllers can be applied is thus consid-
erably broadened. Moreover, the constrained formulation is
taken into account in the paper. An approximated min–max
controller based on the explicit solution of the unconstrained
formulation is presented. This controller minimizes an up-
per bound of the cost function and the optimization problem
to solve is a quadratic programming problem.

The paper is organized as follows: Section 2 introduces
the controller and its related optimization problem. Some
properties of the min–max problem are shown in Section 3.
The characterization of the regions in which the state space

http://www.elsevier.com/locate/sysconle
mailto:davidmps@cartuja.us.es
mailto:danirr@cartuja.us.es
mailto:eduardo@cartuja.us.es
mailto:alamo@cartuja.us.es


D. Muñoz de la Peña et al. / Systems & Control Letters 55 (2006) 266–274 267

can be partitioned is presented in Section 4. In Section 5
the algorithm for exploring the state space and computing
the explicit controller is presented. In Section 6 constraint
handling is addressed. Section 7 illustrates the results pre-
sented in the paper by means of some simulated examples.
Finally, we present concluding remarks in Section 8.

2. Min–max MPC with additive bounded uncertainties

Consider the discrete invariant time linear system with
bounded uncertainties

xk+1 = Axk + Buk + Dwk , (1)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input,
and wk ∈ Rnw is the uncertainty. The uncertainty is supposed
to be bounded; i.e. ‖wk‖∞ ��.

Open loop min–max MPC obtains a single control input
sequence that minimizes the worst case cost (see [8,17,26])
in which the predictions are computed in an open-loop man-
ner (although the resulting controller is a feedback con-
troller). These controllers are based on the solution of a sin-
gle min–max problem optimizing a single control sequence
for all possible values of the uncertainty. This formulation
is known to be conservative because it underestimates the
set of feasible input trajectories [21]. One solution proposed
in the literature is to minimize a sequence of control cor-
rections efforts to a given linear feedback stabilizing con-
trol law for the nominal plant. In this way, some kind of
feedback is introduced in the prediction without increas-
ing the computational effort (see [3,15]). The control input
is given by uk = Kxk + vk , where K is chosen in order
to achieve some desired property for the non-constrained
problem such as stability or LQR optimality. The MPC
controller will compute the optimal sequence of correc-
tion control inputs vk . The dynamics of the system can be
rewritten as

xk+1 = AKxk + Bvk + Dwk ,

where AK = (A + BK).
Consider a sequence v ={v0, v1, . . . , vN−1} of correction

control inputs and w = {w0, w1, . . . , wN−1} a possible se-
quence of input disturbances to the system over a prediction
horizon N. The objective function is defined as a quadratic
performance index of the form

J (v, w, x) =
N−1∑
j=0

[xT
j Qxj + uT

j Ruj ] + xT
NPxN ,

where xj and uj are the predicted state and input of time
j taking into account the uncertainty w. The initial state is
x0 = x. Weighting matrices Q = QT �0 and P = P T �0
are positive semi-definite, and R = RT > 0 is positive
definite.

Taking into account (1), variables xj and uj are given by
linear functions of x, v and w, namely

xj = A
j
Kx +

j∑
i=1

Ai−1
K Bvj−i +

j∑
i=1

Ai−1
K Dwj−i ,

uj = Kxj + vj . (2)

Min–max MPC [8] is based on finding the control sequence
v that minimizes J (v, w, x) for the worst possible case of
the predicted future evolution of the process state or output
signal. This is accomplished by the solution of a min–max
problem denoted P(x)

J ∗(x) = min
v

max
w∈WN

J (v, w, x), (3)

where WN denotes the set of possible disturbance sequences
of length N:

WN = {w| ‖wi‖∞ ��, i = 0, . . . , N − 1}.
This optimization problem is solved at each sampling time
and the solution v∗(x) is applied using the well known re-
ceding horizon approach [7]; i.e., only the first component
of v∗(x) is used and the control input applied to the system
is given by u0 = Kx + v∗

0 = KMPC(x).
Taking into account (2), matrices Hx , Hu and Hw can be

found (see [5,7]) in such a way that

J (v, w, x) = ‖Hxx + Huv + Hww‖2
2. (4)

The cost function is a convex quadratic function on v, x and
w because it is the square of the Euclidean norm of a vector
which depends linearly on these parameters (see [2]).

Function J (v, w, x) is convex in w, thus the maximum
will be attained at least at one of the vertices wi of the poly-
hedron WN (see [2, Theorem 3.4.6]). The maximizer is not
unique and the maximum can also be attained at another
vector w /∈ ver(WN), where ver(WN) is the set of vertices
of WN . However, the maximum is unique and that is what is
needed to solve the inner maximization problem (the maxi-
mizer is indeed irrelevant). The maximum of J (v, w, x) can
therefore be obtained evaluating the cost function at the set
of vertices of the hypercube WN . The min–max problem can
be rewritten as

J ∗(x) = min
v

max
w∈WN

J (v, w, x) = min
v

Jmax(v, x),

with

Jmax(v, x) = max
w∈WN

J (v, w, x) = max
wi∈ver(WN)

J (v, wi , x).

(5)

Function J (v, w, x) is convex on v, and as R > 0, it
holds that HT

u Hu > 0. Thus J (v, w, x) is indeed strictly
convex on v. On the other hand, Jmax(v, x) is the point-
wise maximum of a set of strictly convex functions of v.
Therefore Jmax(v, x) is also strictly convex on v [6]. This
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