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Abstract

MPC or model predictive control is representative of control methods which are able to handle inequality constraints. Closed-loop
stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and
if the constraints are imposed only on the input, global asymptotic stability can be obtained; until recently, use of infinite horizons was
thought to be inevitable in this case. A globally stabilizing finite-horizon MPC has lately been suggested for neutrally stable continuous-
time systems using a non-quadratic terminal cost which consists of cubic as well as quadratic functions of the state. The idea originates
from the so-called small gain control, where the global stability is proven using a non-quadratic Lyapunov function. The newly developed
finite-horizon MPC employs the same form of Lyapunov function as the terminal cost, thereby leading to global asymptotic stability. A
discrete-time version of this finite-horizon MPC is presented here. Furthermore, it is proved that the closed-loop system resulting from the
proposed MPC is ISS (Input-to-State Stable), provided that the external disturbance is sufficiently small. The proposed MPC algorithm is
also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of
the method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

MPC or model predictive control is a receding horizon
strategy, where the control is computed via an optimization
procedure at every sampling instant. It is therefore possible
to handle physical constraints on the input and/or state vari-
ables through the optimization [21]. Over the last decade,
there have been many stability results on constrained
MPC. Moreover, explicit solutions to constrained MPC
are proposed recently [22,4]. These results reduce on-line
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computational burden regarded as a main drawback of MPC,
and extend the applicability of MPC to faster plants as in
electrical applications.

Particular attention is paid in this paper to input-
constrained systems as all real processes are subject to
actuator saturation. Generally, it is not possible to stabilize
input-constrained plants globally. However, if the uncon-
strained part of the system is neutrally stable,1 then global
stabilization can be achieved. A typical example is the
so-called small gain control [23,3,5]; it is noted that the

1 All eigenvalues lie within the unit circle and those on the unit circle
are simple.
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Lyapunov functions used for stability analysis are non-
quadratic functions containing cubic as well as quadratic
terms.

Global stabilization of input-constrained neutrally stable
systems is also possible via MPC; see e.g. [7]. As in [7],
use of infinite horizons is generally thought to be inevitable.
However, infinite horizon MPC can cause trouble in prac-
tice. For implementation, the optimization problem should
be reformulated as a finite horizon MPC with a variable
horizon, and it is not possible to predetermine a finite upper
bound on the horizon in the presence of disturbances.

It is only fairly recently that globally stabilizing finite
horizon MPC has been proposed for continuous-time neu-
trally stable systems [12]. This late achievement is based on
two observations; firstly, the stability of an MPC system is
mostly proved by showing that the terminal cost is a con-
trol Lyapunov function [21,14]. Secondly, the global stabi-
lization of an input-constrained neutrally stable system can
be achieved by using a non-quadratic Lyapunov function as
mentioned above. By making use of these two facts, a new
finite horizon MPC has been suggested in [12], where a non-
quadratic Lyapunov function as in [23,3,5] is employed as
the terminal cost, thereby guaranteeing the closed-loop sta-
bility. Here, we present a discrete-time version of this newly
developed finite-horizon MPC in [12].

Recently, input-to-state stability (ISS) and its integral vari-
ant, integral-input-to-state stability (iISS) have become im-
portant concepts in nonlinear systems analysis and design
[15,1,2]. ISS and iISS imply that the nominal system is glob-
ally stable, and that the closed-loop system is robust against
a bounded disturbance and a disturbance with finite energy,
respectively. There have been some reports on ISS proper-
ties of MPC [20,18,13]. However, these results are limited
in that plants are assumed to be open-loop stable in [13],
and only local properties are obtained in [20,18].

This paper presents a globally stabilizing MPC for input-
constrained neutrally stable discrete-time plants, which is
also (globally) ISS with a restriction on the external distur-
bance. The rest of the paper is organized as follows: Section
2 gives a brief summary on MPC. The stability and ISS prop-
erties of the proposed MPC are then obtained in Sections 3
and 4, respectively, by showing that the optimal cost with
a non-quadratic terminal cost is an ISS Lyapunov function.
The proposed MPC is coded using a sequential quadratic
programming (SQP) algorithm, and simulation results are
given to show the effectiveness of the method in Section 5.
Finally, Section 6 concludes the paper.

2. An overview of MPC

Following [21], a brief summary on MPC is given in this
section. Consider a discrete-time system described by

x+ = Ax + Bu, (1)

where x ∈ Rn is the state, x+ the successor state (i.e. state
at the next sampling instant), u ∈ Rm the control input, and
(A, B) a controllable pair. Defining

u = {u(0), u(1), . . . , u(N − 1)}, (2)

the MPC law is obtained by minimizing with respect to u

JN(x, u) =
N−1∑
i=0

l(x(i), u(i)) + V (x(N))

subject to

x(i + 1) = Ax(i) + Bu(i), x(0) = x,

x(i) ∈ X, u(i) ∈ U, i ∈ [0, N − 1],
x(N) ∈ Xf ⊂ X,

where

l(x(i), u(i)) = x(i)TQx(i) + u(i)TRu(i) (3)

with Q and R being positive definite, V (x(N)) is the ter-
minal cost, the sets U, X represent the input and state con-
straints, and x(N) ∈ Xf is the artificial terminal constraint
employed for stability guarantees. Note that V (x) and Xf

are chosen such that V (x) is a control Lyapunov function
in Xf . This minimization problem, referred to as PN(x),
yields the optimal control sequence

u∗(x) = {u∗(0; x), u∗(1; x), . . . , u∗(N − 1; x)}, (4)

and the optimal cost

J ∗
N(x) = JN(x, u∗(x)). (5)

Then the MPC law, denoted by kN(·), is written as

kN(x) = u∗(0; x). (6)

The entire procedure is repeated at every sampling instant.
The stability properties of the resulting closed-loop are sum-
marized below.

Theorem 1 (Mayne et al. [21]). For some local controller
kf : Xf → Rm, suppose the following:

A1. Xf is closed, and 0 ∈ Xf ⊂ X;
A2. kf (x) ∈ U, ∀x ∈ Xf (feasibility);
A3. Ax + Bkf (x) ∈ Xf , ∀x ∈ Xf (invariance);
A4. V (Ax +Bkf (x))−V (x)+ l(x, kf (x))�0, ∀x ∈ Xf .

Then the optimization problem is guaranteed to be feasible
at all times as long as the initial state can be steerable to
Xf in N steps or less while satisfying the control and state
constraints (i.e. the problem is initially feasible). In addition,
the optimal cost J ∗

N(x) is monotonically non-increasing such
that

J ∗
N(x+) = J ∗

N(Ax + BkN(x))

�J ∗
N(x) − l(x, kN(x)), (7)

thereby ensuring asymptotic convergence of the closed-loop
state to zero.
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