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On controllability of diagonal systems with one-dimensional input space
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Abstract

This paper deals with diagonal systems on a Hilbert state space with a one-dimensional input space and a (possibly unbounded) control
operator. A priori it is not assumed that the input operator is admissible. Necessary and sufficient conditions for different notions of controllability
such as null-controllability, exact controllability and approximate controllability are presented. These conditions, which are given in terms of
the eigenvalues of the diagonal operator and in terms of the control operator, are linked with the theory of interpolation in Hardy spaces.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Controllability is an important property of a distributed
parameter system, which has been extensively studied in the
literature, see for example [7,1,13]. In this paper, we study
controllability of systems whose generator has a Riesz basis
of eigenvectors and a one-dimensional input space. This class
might seem restrictive, but it is fairly general nevertheless,
because many semigroups considered in the literature have a
Riesz basis of eigenvectors, and because a practically imple-
mented system will have a finite-dimensional input space. It
has been noted in the literature that exact controllability rarely
holds if the input space is one dimensional, see Triggiani
[16], Rebarber and Weiss [12] and Jacob and Zwart [5], and
therefore we study weaker notions such as null-controllability
and approximate controllability as well. In applications, null-
controllability is often sufficient. For example, the finite cost
condition is implied by null-controllability and thus the exis-
tence of a unique optimal solution to various quadratic cost
minimization problems is guaranteed.
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On a Hilbert space H, we consider the following system:

ẋ(t) = Ax(t) + bu(t), x(0) = x0, t �0. (1)

We assume that A is the infinitesimal generator of an exponen-
tially stable C0-semigroup (T (t))t �0 on H which possesses
a sequence of normalized eigenvectors {�n}n∈N forming
a Riesz basis for H, with associated eigenvalues {�n}n∈N,
that is,

A�n = �n�n, n ∈ N.

Since (T (t))t �0 is assumed to be exponentially stable we
have supn∈N Re �n < 0. Let �n be an eigenvector of A∗
corresponding to the eigenvalue �n. Without loss of gener-
ality we can assume that 〈�n, �n〉 = 1. Then the sequence
{�n}n∈N forms a Riesz basis of H and every x ∈ H can be
written as

x =
∑
n∈N

〈x, �n〉�n =
∑
n∈N

〈x, �n〉�n.

For every � ∈ R we introduce the interpolation space

H� =
{ ∞∑

n=1

xn�n | {xn|�n|�}n∈N ∈ �2

}
,

http://www.elsevier.com/locate/sysconle
mailto:jacob@math.tu-berlin.de
mailto:J.R.Partington@leeds.ac.uk


322 B. Jacob, J.R. Partington / Systems & Control Letters 55 (2006) 321–328

equipped with the scalar product

〈x, y〉� :=
∑
n∈N

〈x, �n〉〈y, �n〉|�n|2�.

The spaces H� are Hilbert spaces with H0 = H and
H1 = D(A). We denote the dual pairing between H� and H−�
by 〈· , ·〉H�×H−�

. In the sequel let ��0, b ∈ H−� and u ∈
L2(0, ∞). Thus, b can be represented by a sequence {bn}n∈N ⊂
C with {bn|�n|−�}n∈N ∈ �2, that is bn := 〈�n, b〉H�×H−�

. For
more information on the spaces H−� see for example [15].
One important feature of these interpolation spaces H−� is that
the semigroup (T (t))t �0 can be extended to a C0-semigroup
on H−�, which we denote by (T−�(t))t �0, and the generator
of this extended semigroup, denoted by A−�, is an extension
of A. By a solution of (1) we mean the so-called mild solution

x(t) := T (t)x0 +
∫ t

0
T−�(t − s)bu(s) ds, t �0. (2)

Thus the solution is a continuous H−�-valued function. For
��0 we introduce the operators B� ∈ L(L2(0, ∞), H−�) and
B∞ ∈ L(L2(0, ∞), H−�) by

B�u :=
∫ �

0
T−�(� − s)bu(s) ds,

and

B∞u :=
∫ ∞

0
T−�(s)bu(s) ds,

respectively. In the literature on infinite-dimensional systems
it is often assumed that the operator b is admissible for the
semigroup (T (t))t �0, and thus for some of our results we will
include admissibility in the assumptions.

Definition 1.1. b is called finite-time admissible for (T (t))t �0,
if there exists some � > 0 such that B�u ∈ H for every u ∈
L2(0, ∞).

Note that admissibility implies b ∈ H−� for every � > 1
2 , see

Rebarber and Weiss [12]. For exponentially stable systems the
notion of finite-time admissibility is equivalent to the notion
of infinite-time admissibility, that is, B∞u ∈ H for every u ∈
L2(0, ∞). We thus simply say admissibility instead of finite-
time or infinite-time admissibility. Admissibility implies that
B�,B∞ ∈ L(L2(0, ∞), H) and that the mild solution of (1)
corresponding to an initial condition x(0)=x0 ∈ H and to u ∈
L2(0, ∞) is a continuous H-valued function of t. For further
information on admissibility we refer the reader to the survey
[4]. We shall discuss the following controllability concepts.

Definition 1.2. Let � > 0. We say that system (1) is

1. null-controllable in time �, if R(T (�)) ⊂ R(B∞);

2. approximately controllable, if R(B∞) ∩ H is dense in H;
3. exactly controllable, if H ⊂ R(B∞).

Here R(·) denotes the range of an operator. It is easy to see
that every exactly controllable system is approximately con-
trollable and null-controllable in any time � > 0. Further, null-
controllability in time �1 implies null-controllability in time �2
if �2 ��1 > 0, and in Example 2.6 we show that the notion of
null-controllability can depend on �.

Let b be an admissible control operator for (T (t))t �0. In [14]
it is shown that system (1) is exactly controllable if and only
if the system is in finite-time exactly controllable, that is, there
exists � > 0 such that H = R(B�). The following proposition
shows that a similar result holds for null-controllability.

Proposition 1.3. If b is admissible for (T (t))t �0, then the
following statements are equivalent:

1. System (1) is null-controllable in time � for some � > 0.
2. R(T (�)) ⊂ R(B�) for some � > 0.

The proof of this proposition will be given in Section 5.
We proceed as follows. In Section 2 we prove equivalent

conditions for null-controllability, and in Section 3 we study
the notion of exact controllability. Section 4 is devoted to ap-
proximate controllability. Finally, in Section 5 we present the
proofs of our main results.

2. Conditions for null-controllability in time �

In this section we derive equivalent conditions for null-
controllability in time �. We have the following main result.

Theorem 2.1. The following statements are equivalent:

1. System (1) is null-controllable in time �.
2. There exists a constant m > 0 such that for all h > 0 and all

� ∈ R:

∑
−�n∈R(�,h)

|Re �n|2
|bn|2 e2� Re �n

∏
k �=n

∣∣∣∣∣�n + �k

�n − �k

∣∣∣∣∣
2

�mh, (3)

where R(�, h):={s ∈ C+|Re s<h, � − h < Im s < �+h}.
3. {bne�n(·−�)}n is a Besselian basis in the closure of its span

in L2(0, ∞).

The proof of this theorem will be given in Section 5. In the
following remarks we study the condition (3).

Remark 2.2. For � > 0 we consider the sequence {�n}n∈N :=
{−n�}n∈N. Then for k?n we have

∣∣∣∣∣�n + �k

�k − �n

∣∣∣∣∣
2

≈ 1 + 4
(n

k

)�
,
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