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a b s t r a c t

An explicit and precise model for two dimensional electron gas (2DEG) charge density and Fermi level
(Ef ) in heterostructure high electron mobility transistors (HEMTs) is developed. This model is from a con-
sistent solution of Schr€odinger’s and Poisson’s equations in the quantum well with two important energy
levels. With these closed-form solutions, a unified surface potential calculation valid for all the operation
regions is derived. With the help of surface potential, a single-piece drain current model is developed
which is also capable of describing the current collapse effect by using a semi-empirical expression of
source/drain access region resistances. Comparisons with numerical and measured data show that the
proposed model gives an accurate description of Ef and drain current in all regions of operation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, heterostructure high electron mobility transis-
tors (HEMTs) have attracted much attention in high-speed and
high-power applications. One of the most interesting properties
of these devices is the formation of the two dimensional electron
gas (2DEG) with a very high electron mobility at the heterointer-
face. From the computer-aided design perspective, there is still
an urgent demand for an accurate and computationally efficient
compact DC model for HEMTs.

The formation of 2DEG in the quantum well near the heteroin-
terface is the main principle of the HEMT device operation, and the
modeling of 2DEG sheet carrier density (ns) is a basic requirement
in the development of a compact model for these devices. The cal-
culation of ns has to be obtained from the well-known charge con-
trol equations [1] as a self-consistent solution of Poisson’s and
Schr€odinger’s equations in the quantum well. This quantum well
can be approximated as a triangular well and has two lowest sub-
bands (E0 and E1). The major challenge in calculating ns is due to
the complicated transcendental equation of ns which varies with
the gate biases (Vgs). Obviously, the transcendental equation is
not suitable for compact modeling. Recently, the physical-based
approximations [2–4] for explicit solution of ns were developed
and the surface-potential-based drain current models were also

presented. However, their calculations were derived by only
considering one subband (E0) in the quantum well and ignoring
the other one (E1). In our previous work [5], we also used this
assumption and presented an explicit solution to efficiently com-
pute ns and the quasi-fermi potential Ef . Compared with the mod-
els in [2–4], our scheme [5] is more straightforward and accurate.
Nevertheless, as indicated in [6,7], the assumption of neglecting
the contribution of the second subband (E1) is only valid for certain
types of devices, and E1 has a significant impact on device charac-
teristics when device parameters are varied. In [6], an initial result
without considering E1 was obtained first. To enhance the accuracy
of the initial, refinements including the contribution from E1 were
carried out by Householder’s method for solving implicit functions.
In addition, [6] does not take the case of Ef > E1 into account which
is important for GaAs-based HEMTs. Therefore, Zhang et al. [7]
improved the model in [6], and analytical expressions for ns and
Ef as explicit functions of the terminal biases were proposed. How-
ever, this model is very complex. Thus, it is very important to
achieve a simply but accurate solution for compact models.

In this paper, accounting for the two lowest subbands in the
quantum well, we present an improved analytical calculation for
ns and Ef based on our previous work [5]. After that, the surface
potential (ws) calculation can be obtained using Ef . Therefore, a
surface-potential-based compact model for HEMTs is developed
to predict the current–voltage (I–V) characteristics. Furthermore,
the current collapse in I–V characteristics is also captured by using
a semi-empirical model for source/drain access region resistances.

http://dx.doi.org/10.1016/j.sse.2015.10.005
0038-1101/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Electronic Engineering, Jinan Univer-
sity, Guangzhou 510630, China. Tel.: +86 020 85222481; fax: +86 020 85220231.

E-mail address: dwanl@126.com (W. Deng).

Solid-State Electronics 115 (2016) 54–59

Contents lists available at ScienceDirect

Solid-State Electronics

journal homepage: www.elsevier .com/locate /sse

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sse.2015.10.005&domain=pdf
http://dx.doi.org/10.1016/j.sse.2015.10.005
mailto:dwanl@126.com
http://dx.doi.org/10.1016/j.sse.2015.10.005
http://www.sciencedirect.com/science/journal/00381101
http://www.elsevier.com/locate/sse


2. The calculation of the Fermi level

As shown in Fig. 1, a self-consistent solution of Schr€odinger’s
and Poisson’s equations in the triangular well including two sub-
bands, is given by [7]

ns ¼ e
qd

ðVgs � Voff � /n � Ef Þ ð1Þ

ns ¼ D/th ln 1þ exp
Ef � E0

/th

� �� �
þ ln 1þ exp

Ef � E1

/th

� �� �� �
ð2Þ

E0 ¼ c0n
2=3
s ð3Þ

E1 ¼ c1n
2=3
s ð4Þ

where e and d are the permittivity and thickness of the material
between the gate and 2DEG, respectively, Voff is the cutoff voltage,
Ef is the Fermi potential with respect to the bottom of conduction
band, /n is the channel potential, D is Density of States, c0 and c1
are determined by Robin boundary condition [8], and /th is the ther-
mal voltage. Note that, Eqs. (1)–(4) are based on the one-
dimensional (1D) Poisson’s and Schr€odinger’s equations, but for
high voltage and high field modes, the two-dimensional system
has to be solved. For simplification, we only apply the 1D Poisson’s
and Schr€odinger’s equations in this paper.

As indicated by Zhang et al. [7], different sets of parameters
c0; c1;Df g lead to different contributions of E0 and E1. Therefore,
this variation results in a more complicated solution of Ef and ns.
Obviously, as shown in Eqs. (1)–(4), the exact solutions of Ef and
ns are transcendental in nature. To obtain a computationally effi-
cient solution, which is suitable for circuit simulators, the regional
approach [3] is employed here. As a result, three operation regions
are divided, i.e., the strong 2DEG region, the moderate 2DEG
region, and the subthreshold region.

2.1. Strong 2DEG region

Here, we assume that E1 > E0. In the strong 2DEG region, we
have Ef > E0. Thus, there exist two possible conditions: (A)
Ef > E1 and (B) E0 < Ef < E1. For case (A), Eq. (2) can be approxi-
mated as

ns ¼ DðEf � E0Þ þ DðEf � E1Þ ¼ 2DEf � Dðc0 þ c1Þn2=3
s : ð5Þ

Using Eq. (1), Ef as a function of Vgs can be expressed as

AðVgo � Ef Þ ¼ 2DEf � Dðc0 þ c1ÞA2=3ðVgo � Ef Þ2=3 ð6Þ
where A ¼ e=qd and Vgo ¼ Vgs � Voff � /n. Except for some coeffi-
cients, Eq. (6) is very similar to the relation of Ef vs. Vgs in our
previous work [5], but [5] neglected the contribution of E1. Further-
more, Eq. (6) can be rewritten as a cubic equation

aE3
f þ bE2

f þ cEf þ e ¼ 0 ð7Þ

where a ¼ ð2þ A=DÞ3, b ¼ 3ð�A=DÞVgoð2þ A=DÞ2 � ðc0 þ c1Þ3A2,

c ¼ 3ðA=DÞ2V2
goð2þ A=DÞ þ 2ðc0 þ c1Þ3A2Vgo, and e ¼ ð�A=DÞ3V3

go�
ðc0 þ c1Þ3A2V2

go.
The explicit solution of Ef can be calculated by the S. Fan formu-

las [9]

Ef ;1 ¼ �b� Y1=3
1 � Y1=3

2

3a
ð8Þ

Y1;2 ¼ A0bþ 1:5að�B0 �
ffiffiffiffi
D

p
Þ ð9Þ

where Ef ;1 denotes the Fermi potential in the case (A), D ¼ B2
0�

4A0C0;A0 ¼ b2 � 3ac;B0 ¼ bc � 9ae, and C0 ¼ c2 � 3be.
For case (B), Eq. (2) is reduced to

ns ¼ DðEf � E0Þ ¼ DðEf � c0n
2=3
s Þ: ð10Þ

Eq. (10) is the same as the case where E1 is negligible, which can be
solved in the same way as given before [5]. As a consequence, the
solution for case (B) is marked as Ef ;0.

2.2. Moderate 2DEG region

In the moderate 2DEG region, we have 0 < Ef < E0. Therefore,
Eq. (2) can be simplified as [7]

ns ¼ D/th exp
Ef � c0n

2=3
s

/th

 !
: ð11Þ

It should be noted that, from [1], Eq. (2) can be re-expressed as

Ef ¼ /th lnðYÞ ð12Þ

Y ¼ �Rþ S
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ S
2

� �2

� RSð1� ens=D/th Þ
s

ð13Þ

where R ¼ e1=/thE0 ; S ¼ e1=/thE1 , and Y ¼ e1=/thEf . We plot the relation

between Ef and n2=3
s using Eqs. (12) and (13) in Fig. 2, which shows

a linear approximation between Ef and n2=3
s . Consequently, Eq. (11)

can be approximated as

ns ¼ D/th exp
Ef � c0ðk3Ef þ k1Þ

/th

� �

¼ D/th exp
�c0k1
/th

� �
� exp

ð1� c0k3ÞEf

/th

� �
; ð14Þ

Fig. 1. Energy-band diagram of a HEMT. Fig. 2. Ef as a function of n2=3
s .
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