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a b s t r a c t

In this paper it is shown that the implicit Euler time-discretization of some classes of switching systems
with sliding modes, yields a very good stabilization of the trajectory and of its derivative on the sliding
surface. Therefore the spurious oscillations which are pointed out elsewhere when an explicit method
is used, are avoided. Moreover the method (an event-capturing, or time-stepping algorithm) allows for
multiple switching surfaces (i.e., a sliding surface of codimension > 2). The details of the implementation
are given, and numerical examples illustrate the developments. This method may be an alternative
method for chattering suppression, keeping the intrinsic discontinuous nature of the dynamics on the
sliding surfaces. Links with discrete-time sliding mode controllers are studied.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Sliding mode controllers are widely used because of their
intrinsic robustness properties [1,2]. Some important fields of
application are induction motors [3], aircraft control [4], hard
disk drives [5], solar systems [6], and autonomous robots [7].
However they are known to generate chattering which renders
their application delicate. Solutions to cope with chattering or
reduce its effects have been proposed, see e.g. [8–10], which also
have their own limitations [10]. One drawback of these solutions
is that they usually destroy the intrinsic discontinuous nature of
sliding mode control. Fundamentally, these control schemes are
of the switching discontinuous type and they yield closed-loop
systems that can be recast into Filippov’s differential inclusions.
The numerical simulations of such nonsmooth dynamical systems
is non trivial and it has received a lot of attention, see [11]
and references therein. In this paper we focus on time-stepping
methods, which have an interest not only for the sake of numerical
simulation, but also for the real implementations of sliding mode
controllers on discrete-time systems. Recently it has been shown
that the explicit Euler method generates unwanted effects like

∗ Corresponding author. Tel.: +33 4 61 52 29; fax: +33 4 61 54 77.
E-mail addresses: vincent.acary@inrialpes.fr (V. Acary),

bernard.brogliato@inrialpes.fr (B. Brogliato).

spurious oscillations (also called chattering effects) around the
switching surface [12,13]. In parallel, the digital implementation of
sliding mode controllers has been studied in [14], where the Zero-
Order Holder (ZOH) discretization is used.
The purpose of this paper is to analyze the implicit (backward)

Euler method for some particular classes of differential inclusions,
that include sliding mode controllers. It is shown that, besides
convergence and order results, the advantage of the implicit
method is that it allows one to get a very accurate and smooth
stabilization on the switching surface (of codimension one or
larger than one). Roughly speaking, this is due to the fact that the
switches are no longer monitored by the state at step k, but by a
multiplier (a slack variable in a nonlinear programming language).
The multivalued part of the sgn(·) function, i.e. a multifunction,
is then correctly taken into account, avoiding stiff problems. The
advantage of such ‘‘dual’’ methods in terms of their accuracy
on the sliding surface has already been noticed in [15] in an
event-driven context, where the motivation was the simulation
of mechanical systems with Coulomb friction. From a numerical
point of view, our study shows that convergence and order results
may not be sufficient to guarantee that the derivative of the
state is correctly approximated on the switching surface. The
implicit method adapts naturally to an arbitrary large number
of switching surfaces, that is not the case of most of the other
methods which become quite cumbersome as soon as more than
two switching surfaces are considered. A further advantage of
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the proposed method is that contrary to other methods that
have been studied and which destroy the intrinsic discontinuous
nature of sliding mode systems1 (like the so-called boundary
layer control, or various filtering techniques), our method keeps
the multivalued discontinuity and consequently the fundamental
aspects and properties of sliding mode control from a Filippov’s
system point of view. Moreover, sampling rates need not be
high to reduce chattering, contrary to other discrete sliding mode
controllers. A second contribution of this paper is to show that the
results that hold for the backward Euler scheme, extend to ZOH
discretizations of sliding mode systems.
The paper is organized as follows: Section 2 presents a moti-

vating example for using an implicit Euler implementation of the
simplest sliding mode system. In Section 3, a class of differen-
tial inclusions is introduced and existence and uniqueness re-
sults are given under the maximal monotonicity assumption.
Through several examples, the Equivalent-Control-Based Sliding-
Mode-Control (ECB-SMC) and the Lyapunov-based discontinuous
robust control are shown to fit well within this class of differen-
tial inclusion. In Section 4, some convergence and chattering free
finite-time stabilization results are given. These central results of
the paper show that the implicit Euler implementation of the dif-
ferential inclusion yields a chattering free convergence in finite
time on the sliding surface. Section 5 is devoted to the study of
Discrete-time Sliding Mode Control and the extension to ZOH dis-
cretization. Some hints on the numerical implementation of the
implicit Euler scheme are given in Section 6 and the paper ends
with some numerical experiments in Section 7.
Notations anddefinitions: LetA ∈ Rn×m, thenA•i is the ith column
and Ai• is the ith row. The open ball of radius r > 0 centered at a
point x ∈ Rn is denoted by Br(x). For a set of indicesα ⊂ {1, . . . , n}
and a column vector x ∈ Rn, the column vector xα will denoted the
sub-vector of corresponding indices in α, that is xα = [xi, i ∈ α]T .

2. A simple example

To start with we consider the simplest case:

ẋ(t) ∈ −sgn(x(t)) =

{1 if x(t) < 0
−1 if x(t) > 0
[−1, 1] if x(t) = 0

, x(0) = x0 (1)

with x(t) ∈ R. This systempossesses a unique Lipschitz continuous
solution for any x0. The backward Euler discretization of (1) reads
as:{
xk+1 − xk = −hsk+1
sk+1 ∈ sgn(xk+1).

(2)

This method converges with at least order 12 (see Proposition 2).
Let us now state a result which shows that once the iterate xk has
reached a value inside some threshold around zero for some k, then
the dual variable sk+1 keeps its value and so does xk+n for all n > 1.

Lemma 1. For all h > 0 and x0 ∈ R, there exists k0 such that
xk0+n = 0 and

xk0+n+1−xk0+n
h = 0 for all n > 1.

Proof. The value k0 is defined as the first time step such that xk0 ∈
[−h, h]. If x0 ∈ [−h, h], then k0 = 0. Otherwise, the solution of
the time-discretization (2) is given by xk = x0 − sgn(x0)kh, sk =
sgn(xo) while xk 6∈ [−h, h] for k < k0, and k0 = d

|x(0)|
h e − 1. The

symbol dxe is the ceiling function which gives the smallest integer

1 See [10] for a discussion on this point.

Fig. 1. Iterations of the backward Euler method.

greater than or equal to x. Let us now consider that xk0 ∈ [−h, h].
The only possible solution for{
xk0+1 − xk0 = −hsk0+1
sk0+1 ∈ sgn(xk0+1)

(3)

is xk0+1 = 0 and sk0+1 =
xk0
h . For the next iteration, we have to

solve{
xk0+2 = −hsk0+2
sk0+2 ∈ sgn(xk0+2)

(4)

and we obtain xk0+2 = 0 and sk0+2 = 0. The same holds for all
xk0+n, sk0+n, n > 3, redoing the same reasoning. Clearly then the
terms (xk0+n+1 − xk0+n)/h approximating the derivative are zero
for any h > 0. �

This result is robust with respect to the numerical threshold
that can be encountered in floating point operations. Indeed, let us
assume that xk0−h = ε � 1, that is, ε > 0 is zero at themachine’s
precision. We obtain sk0+1 = −1 and xk0+1 = ε that is zero at the
machine’s precision. For n = 2,we obtain xk0+2 = 0 and sk0+2 =

ε
h .

This robustness stems from the fact that the dynamics is not only
monitored by the sign of xk but also by the belongingness to the
interior of [−1, 1] of the ‘‘dual’’ variable sk+1.
Consequently this result shows that there are no spurious

oscillations around the switching surface, contrary to other
time-stepping schemes like the explicit Euler method [12,13].
Remarkably Lemma 1 holds for any h > 0, which means that
even a large time step assures a smooth stabilization on the sliding
surface. It is noteworthy that solving the system (2) with unknown
xk+1 and sk+1 is equivalent to calculate the intersection between
the graph of the multivalued mapping xk+1 7→ −hsgn(xk+1) and
the straight line xk+1 7→ xk+1 − xk. This is illustrated on Fig. 1,
where few iterations are depicted until the state reaches zero.
From a control perspective the input is implemented on

[tk, tk+1) as uk = −sgn(xk+1) as a piecewise affine function of
xk and h, where h is the sampling time. There is no problem of
causality in such an implementation. It is noteworthy that in the
implicit method there is absolutely no issue related to calculating
sgn(0), or more exactly sgn(ε) where ε is a very small quantity
whose sign is uncertain. The implicit method automatically
computes a value inside the multivalued part of the sign
multifunction and may be considered as the time-discretization of
themultifunction sgn(·). It is easy to show that the explicitmethod
yields an oscillation around x = 0, as shown in more general
situations in [12,13]. Other time-stepping methods like the so-
called switched model [11,16] fail to correctly solve the integration
problem when the number of switched surfaces is too large (see
also [8] for similar issues when the so-called sigmoid blending
mechanism is implemented). Moreover this method may yield a
stiff system, and from a control point of view it introduces a high-
gain feedback that may not be desirable in practical applications.
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