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A new model order reduction technique is presented which preserves passivity and non-expansivity.
It is a projection-based method which exploits the solution of linear matrix inequalities to generate a
descriptor state space format which preserves positive-realness and bounded-realness. In the case of both
non-singular and singular systems, solving the linear matrix inequality can be replaced by equivalently
solving an algebraic Riccati equation, which is known to be a more efficient approach. A new algebraic

Riccati equation and a frequency inversion technique are also presented to specifically deal with the
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important singular case. The preservation of Markov moments is also guaranteed by the judicious choice
of a projection matrix. Three pertinent examples comparing the present approach with positive-real
balanced truncation show the strength and accuracy of the present approach.
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1. Introduction

The use of model order reduction (MOR) aiming at obtain-
ing compact descriptions of initially large linear state space mod-
els has become a standard component in computer-aided design
methodologies for a large number of engineering and physics ap-
plications. For a good introductory textbook on MOR the reader
is referred to [1]. Three MOR approaches can currently be dis-
tinguished [2]. The first approach consists of the singular value
decomposition (SVD) based methods, comprising the balanced
realization method [3] and Hankel norm approximation [4]. The
second approach consists of the projection-based Krylov-subspace
methods [5], comprising the Laguerre-SVD approach [6,7]. The
third approach consists of iterative methods combining aspects of
both the SVD and Krylov methods [8]. In the excellent overview
paper [2] both strengths and weaknesses of the three approaches
are analyzed; e.g., the first and third approaches generally preserve
stability, while the second approach is fast but does not in general
guarantee stability (but see also [7]).

Passivity is an important property to satisfy because stable, but
non-passive macro-models can produce unstable systems when
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connected to other stable, even passive, loads. It is well-known
that passivity is equivalent with the positive-realness of the system
transfer function. The equivalent form of passivity for a scattering
matrix representation is non-expansivity or bounded-realness
[9,10]. It is well established that model reduction techniques with
preservation of passivity mostly belong to the balanced truncation
class [11-14] or are spectral interpolation-based methods [15-17].
In the case of projection-based Krylov methods the problem of
preservation of passivity has been studied by several researchers;
for an overview of existing approaches see [18,19,6,20-22]. The
problem with the Krylov-based passivity preserving methods is
that they often assume a special descriptor state space setting that
may not always be feasible [ 12]. For Krylov subspace methods such
as PRIMA [21] to generate a passive reduced order model, it is
well known [12] that the system must be in a special descriptor
state space form, induced by the so-called modified nodal analysis
representation [21] of passive networks. Otherwise PRIMA will
generate a not necessarily passive reduced order model.

In this paper, we present a new passivity-preserving and non-
expansivity-preserving MOR technique, which does not require
any special internal structure of the state space model. It is a
projection-based method which exploits the solution of linear ma-
trix inequalities (LMI's) to generate a descriptor state space for-
mat which preserves positive-realness and bounded-realness. In
the case of both non-singular and singular systems, solving the LMI
can be replaced by equivalently solving an algebraic Riccati equa-
tion (ARE), which is known to be a more efficient approach [23,24].
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While the LMI solvers of [23] are significantly faster than classical
convex optimization algorithms, the complexity of LMI computa-
tions can grow quickly with the number of states n. For example,
the number of operations required to solve a Riccati equation is
0(n?), while the cost of solving an equivalent Riccati inequality
LMI [24] is O(n®). Of course, for large-scale problems, the 0(n®)
complexity may still be prohibitive, and in that case fast iterative
methods such as the ones in [13,25] may alleviate the cost of solv-
ing the Riccati equations.

This paper is organized as follows. Section 2 describes the new
technique and contains the proof of its passivity-preserving and
non-expansivity-preserving properties. Section 3 deals with the
important singular case and presents a new ARE and a frequency
inversion technique specifically tailored to the singular case.
Section 4 presents pertinent choices for the Krylov projection ma-
trices in such a way that the Markov moments of the system are
also preserved. The main novelty of our approach, as compared to
positive-real balanced truncation (PRBT) [12,13], is that we only
need to solve a single Riccati equation, instead of the two dual
Riccati equations in PRBT. Also, while PRBT admits theoretically
provable error bounds, which is not the case in the present method,
our approach preserves Markov moments or Laguerre expansion
coefficients. The present technique could be most adequately de-
scribed as a hybrid guaranteed passive model order reduction
method, preserving most of the benefits of both positive-real bal-
anced truncation and projection-based Krylov subspace methods.
Finally, in Section 5 we outline the basics of positive-real balanced
truncation, reformulate PRBT in an important singular case, and
provide three pertinent examples comparing the present approach
with positive-real balanced truncation.

2. Main results

Notation: Throughout the paper X" and X" respectively denote
the transpose and Hermitian transpose of a matrix X, and I, de-
notes the identity matrix of dimension n. For two Hermitian ma-
trices X and Y, the matrix inequalities X > Y or X > Y mean that
X — Y is respectively positive definite or positive semidefinite. Of
course,X < YorX < YmeansY > X or Y > X. The closed right
halfplane 9ie[s] > 0 is denoted C..

2.1. Positive-real systems

For the real system with minimal realization

X =Ax+ Bu (1a)
y=Cx+ Du (1b)
where B # 0, C # 0 are respectively n x p and p x n real matrices
and A # Ois an n x n real matrix, to be passive, it is required that
the p x p transfer function

H(s) = C(sl, —A)~'B+D

is analytic in C, such that

H(s) +H(@)" >0 VseCy.

It is well-known [9] that the positive-real lemma in linear matrix
inequality (LMI) format: 3PT = P > 0 such that

T _ T
[AP—I—PA PB C]EO @)

B'p—C -D-D'
guarantees the passivity of the system (1). With the additional
stronger condition D + DT > 0 (strict passivity at s = oo), the LMI

(2) is feasible if and only if there exists a real matrix P = P > 0
satisfying the algebraic Riccati equation (ARE)

A'P +PA+ (PB—CHW,(PB—C")" =0 (3)

where
W,=(D+D")".

The ARE (3) is generally solved by constructing the associated
Hamiltonian matrix

4 — |A—BW,C BW,B"
T -C"w,c AT+ CW,BT |

Then the system (1) is passive, i.e., the LMI (2) is feasible, if and only
if ¢ has no purely imaginary eigenvalues [26].

Before tackling the main results, we need to define what is
meant by a descriptor state space system. It is a more general sys-
tem described by the differential equations

Ex = Ax + Bu (5a)
y=Cx+ Du (5b)

where E # 0is an n x n real matrix called the descriptor. In de-
scriptor state space format the transfer function is given by

H(s) = C(sE — A)"'B+D.

Note that it is usually required that SE — A is a regular matrix pen-
cil, i.e., det(sE — A) = 0 has a finite number of s values as solu-
tions. When E is singular, the conversion of the descriptor system
into a standard state space form can be performed by using the
SVD coordinates-based approach [27] or computing a Weierstrass-
like form of the pencil matrix [28]. However, since these methods
are usually difficult to apply, a more practical approach for dealing
with the singular descriptor case is by working implicitly in state
space [29,30].

In our case we will only need the simple nonsingular descriptor
state space format with E nonsingular.

Next suppose H (s) is passive. The following theorem provides a
means to obtain a reduced model which preserves passivity.

(4)

Theorem 2.1. Suppose the system (1) is passive and let P = PT > 0
be a solution of the LMI (2). Let U bean x r, 1 < r < n matrix of
full rank. Then the reduced descriptor state space system with transfer
function

Hi(s) = CU(sUTPU — UTPAU)"'UTPB+ D

is passive.

Proof. It is clear that H;(s) can be written as

Hi(s) = C(sl, —A)"'B+D

where

A= (UTPU)"'UTPAU

C=CcU B=U"PU)'U"PB.

Putting P = UTPU, it is clear that PT = P > 0. Next consider the
matrix

o [Z\Tﬁ+ﬁix faia_f:f]

B'P—C -D-D"
_[uT@A'™P+pPA)U UT(PB-CT)
| BP-0uUu -D—D" |-

It is easy to show that the matrix £ can be written as

A'P+PA PB-C"
_ T
fi=¢ [BTP—C —p-p|¢
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By virtue of the LMI (2) we conclude that £; < 0. O
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