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This paper addresses the model reduction problem for a class of stiff chemical Langevin equations that
arise as models of biomolecular networks with fast and slow reactions and can be described as continuous
Markov processes. Initially, a coordinate transformation is sought that allows the decoupling of fast and
slow variables in the model equations. Necessary and sufficient conditions are derived for such a linear
transformation to exist, along with an explicit change of variables which achieves the desired decoupling.

For the systems for which this step is applicable, the method of adiabatic elimination is applied to
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simple examples.

determine a representation of the slow dynamics. Theoretical concepts and results are illustrated with
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1. Introduction

Biomolecular reaction networks that are far from the thermo-
dynamic limit (i.e., that involve small species concentrations and
infrequent reaction events) cannot be described accurately by clas-
sical deterministic kinetic models [1-3]. The inherent stochas-
ticity of such systems becomes important and can be naturally
accounted for by considering the vector of species numbers as a
continuous-time discrete-state Markov process governed by the
chemical master equation [4]. Assuming the existence of a macro-
scopically infinitesimal time increment, this model can be approx-
imated by a continuous-time continuous-state Markov process
governed by systems of chemical Langevin equations (CLEs) [4],
which are stochastic differential equations (SDEs) with multiplica-
tive noise terms.

Numerical simulation of kinetic models either in the determin-
istic regime or in the stochastic regime (and of course across dif-
ferent regimes) is hindered by the co-presence of reactions whose
rates span widely different orders of magnitude. This results in
stiffness of the underlying mathematical model and multi-time-
scale behavior in the network dynamics. Model reduction is a
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natural tool to overcome this problem through the derivation of
reduced non-stiff approximations of the network models in the ap-
propriate time scales (see [5] for a recent comprehensive collection
of papers on methods and applications of model reduction for mul-
tiscale systems).

In the case of deterministic kinetic models, described by sys-
tems of ordinary differential equations (ODEs), the model reduc-
tion problem has been extensively studied (see e.g. [6] and the
references therein). Several attempts have also been devoted to
the derivation of reduced-order models for networks modeled by
chemical master equations. Reduced chemical master equations
have been derived by projector methods [7-9], by generalizing the
notion of quasi-steady-state assumption to stochastic systems in
order to eliminate the fast intermediates [10], by introducing the
concept of stochastic quasi-equilibrium to eliminate the fast reac-
tions [11], and by approximating the evolution of the fast reactions
by deterministic models or chemical Langevin equations [ 12]. Con-
trary to the other two descriptions of chemical reaction networks,
the derivation of reduced-order models for stiff CLEs has not been
investigated.

On the other hand, the mathematical literature offers model
reduction techniques for SDEs with separated fast and slow
variables of the following form:

dY =D (Y. Y,)dt+B (Y, Y,)dW,
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where Y . € R™ are referred to as slow variables and Y ;€ R™ as
fast variables, W (respectively, W) is an ms-dimensional
(respectively, my-dimensional) vector of independent Wiener
processes, and D and D (respectively, B; and By) are vectors
(respectively, matrices) of the appropriate dimensions. For systems
of this form, the fast variables may not converge in probability [ 13],
which precludes the direct extension of the model reduction
techniques available for ODEs [14], where the fast and slow
dynamics are derived separately.

One approach followed in the literature is extending the
averaging principle introduced for ODEs in to SDEs [15]. Several
assumptions have been made to guarantee different types of
convergence. In [16,17], convergence in distribution was proved
when the coefficients satisfy Lipschitz and growth conditions.
When the matrix B; does not depend on the fast variables, stronger
convergence results have been established. In [18], convergence
in probability was proved provided that there was boundedness
of the coefficients. In [19], under Lipschitz and linear growth
conditions of the coefficients, the authors showed convergence in
the mean-square sense, and the result was extended by one of the
authors, in [20], to pth mean convergence for all p € [0, q] where
the initial conditions of the system in Eq. (1) have finite gth mean.

Analytical asymptotic series for the probability density have
also been proposed not only for the Kolmogorov equations as-
sociated to the SDE systems in Eq. (1) but also for more general
Kolmogorov equations allowing mixed derivatives (i.e., with re-
spect to both the fast and slow variables). However, this approach
quickly becomes intensive, and has therefore been restricted to
the Fokker-Planck (or Kolmogorov forward) equations for systems
with one fast and one slow variable [21,22]. In the case of the
Kolmogorov backward equation, multi-dimensional models have
been studied, but they require a very involved approach combin-
ing probabilistic and analytic techniques [23].

Finally, the method of adiabatic elimination based on projector
formalism has been developed for numerous SDE systems [24-28].
In this approach, the model reduction problem is recast in terms
of the Fokker-Planck equation. The fast variables relax to the
stationary distribution derived at fixed slow variables for a ‘fast’
Fokker-Planck operator. A projector is then defined by means of
this stationary distribution in order to derive the Fokker-Planck
equation for the probability density of the slow variables alone. The
original distribution is computed by multiplying the fast variable
stationary density by the slow variable density.

In this paper, we address the model reduction problem for stiff
CLEs that arise as models of biomolecular networks with fast and
slow reactions, and can be described as continuous Markov pro-
cesses. The original formulations of such models result in stochas-
tic differential equations whereby each variable may be affected
by both fast and slow reactions; as a result, they require small time
integration steps [29], and they do not have the explicit separation
of fast and slow variables observed in Eq. (1). Motivated by this,
initially, we seek a coordinate transformation that allows the de-
coupling of fast and slow variables. Necessary and sufficient condi-
tions are derived for such a transformation to exist, along with an
explicit change of variables which achieves the desired decoupling.
For the systems for which this step is applicable, we treat each of
the two subsets independently by extending the method of adi-
abatic elimination to the systems under consideration. Fast vari-
ables are assumed to relax to a pseudo-stationary density under
the hypothesis that the slow variables remain constant. Slow vari-
ables are approximated through a Fokker-Planck equation which
solely governs their probability density. The final step is to com-
pute the approximated solution of the initial CLEs system by sim-
ply multiplying the two independent probability densities.

The paper is organized as follows. First, we define the problem
of the two-time-scale CLE model. Then the reduction framework is
formulated and the necessary theorems are presented and derived.
Then theoretical concepts and results are illustrated with simple
examples.

2. Two-time-scale CLE model

Consider a biomolecular network in which the following R
reactions involving S species take place:

s s
oo — Y piX j=1.....R )
s=1 s=1

Note that this notation allows for common reactants and products
in a reaction (see examples in [26,4]). The SDEs describing such
systems take the form [4]

R R
dX =Y v ikGeOdt + Y v /kiGX)dw;, (3)
j=1 j=1

where X denotes the vector of species X = [X; XS]T, ki
the mesoscopic reaction rate of reaction j, (Wy,..., Wg) are
R independent Wiener processes, the stoichiometric vector v i
associated to reaction j is defined as

pﬁ—rg
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For simplicity, the notation dW; for 1 < j < R is adopted instead
of dWj(t).

It is assumed that p fast reactions have been identified, and,
without loss of generality, that these are the last p ones. In
particular, the reaction rates are such that

ki

L ~0(1) ij=R-p+1

kj (4)
kp—pr1>ki i <R-—p.

Corresponding to this distinction between fast and slow reac-
tions, the (S x R) stoichiometric matrix V = [v, vg|canbe
writtenas vV = [ Vs Vs], where the (S x (R — p)) matrix V; (re-
spectively, the (S x p) matrix V) corresponds to the stoichiomet-

ric vectors associated with the slow reactions (respectively, fast
reactions), i.e.,

Vs =[v, Vgop)

Vf — [BR7P+1 !R]

Observing that the SDE system is stiff owing to the co-existence
of large and small reaction rates, we extract the large parameter
1/€, where € is defined as the inverse of the large representative
reaction rate kg_,1, in order to isolate the source of stiffness. Thus,
the SDEs with fast and slow reactions can be written in a matrix

(3)

form:
ki c1(X) Vi e (X)dw,
X = v, : dt + Vs :
kr—p cr—p(X) | Vkr—p Cr_p(X)dWi_,
) CRpr1X) ]
+-v; : dt
(kr/kr—p+1) Cr(X) |
vV er—p+1 XD AWr_p 1
+ L Vi : (6)

e :
v (kr/kr—p+1) cRQOAWR



Download English Version:

https://daneshyari.com/en/article/752629

Download Persian Version:

https://daneshyari.com/article/752629

Daneshyari.com


https://daneshyari.com/en/article/752629
https://daneshyari.com/article/752629
https://daneshyari.com

