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a b s t r a c t

We deal with dynamic equations on time scales, where we characterize the positivity of a system.
Uniform exponential stability of a system is determined by the spectrum of its matrix. We investigate the
corresponding stability radii with respect to structured perturbations and show that, for positive systems,
the complex and the real stability radius coincide.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider a d-dimensional time-invariant linear system of
dynamic equations

x1 = Ax (1)

(A ∈ Rd×d) on a time scale T, where x1 denotes the derivative of
xwith respect to T. Here a time scale is a non-empty closed subset
of R. For the basics of the dynamic equations on time scales we
refer to [1]. System (1) is said to be positive if it leaves the coneRd

+

invariant, i.e. if every solution starting at a point ξ ∈ Rd
+
at time

t0 ∈ T remains in Rd
+
for all times t ∈ T, t ≥ t0. Positive systems

arise in the modeling of processes where the state variables only
have a meaning if they are nonnegative. For the time scales T = R
and T = N the characterization of positive systems in terms of the
system matrix is well-known. We provide a characterization for
positivity of system (1) on time scales.
Since a dynamical model is never an exact portrait of the real

process, it is important to investigate the robustness of a stable
system (1) under perturbations.We deal with uniform exponential
stability, which is determined by the spectrum of the system
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matrix. It is of interest to find the maximal r > 0 such that the
family of systems

x1 = (A+ D)x, ‖D‖ < r, (2)

is uniformly exponentially stable, where the matrices D are
complex, real or positive, respectively. This leads to the notions of
complex, real and positive stability radius. We also study the case
of structured perturbations

A ; A+ BDC

for given structure operators B and C .
For continuous- or discrete-time systems stability radii are

well-investigated notions, see [2]. A discussion on the differences
between the complex and the real stability radius can be found
in [3]. The complex stability radius is more easily analyzed and
computed than the real one. For positive systems the situation
is simpler, since the complex and the positive stability radius
coincide. The continuous and discrete time cases are established
in [4], resp. [5]. In [6,7] both cases are considered for more general
perturbation classes. The importance of monotonic norms in the
context of positive systems is pointed out in [4,5]. In the setting
of Banach lattices similar results are obtained in [8]. Stability
radii of finite dimensional positive continuous- and discrete-time
systems have first been studied in [9]. However, in this reference
the condition that B and C have to be nonnegative is not explicitly
stated. An example in [7] shows that this assumption is essential.
The stability of intervals of nonnegative matrices is studied

in [10,11].
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In the present paper we deal with positive systems on arbitrary
time scales. Combining the Perron–Frobenius theory for positive
matrices and for Metzler matrices, respectively, we show that for
such systems the complex and the real stability radiuswith respect
to structured perturbations coincide.

2. Preliminaries

In the following K denotes the real (K = R) or the complex
(K = C) field. For z ∈ C and r ∈ R we define Br(z) = {x ∈
C: ‖x − z‖ ≤ r}. Consider on Cd the norm ‖x‖ = (

∑n
i=1 |xi|

2)
1
2 ,

such that one has ‖x+ iy‖2 = ‖x‖2 + ‖y‖2 for x, y ∈ Rd. As usual,
Kd×d denotes the space of square matrices with d rows, equipped
with the according operator norm (spectral norm), and Id is the
identity mapping on Kd. σ(A) ⊂ C denotes the set of eigenvalues
of a matrix A ∈ Kd×d. The spectral radius, respectively the spectral
abscissa of A are given by

ρ(A) := max{|λ|: λ ∈ σ(A)} and µ(A) := max{<λ: λ ∈ σ(A)}.

Let Rd be equipped with the standard entrywise ordering, i. e.
x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . , d}, and denote
by Rd

+
= {x ∈ Rd: 0 ≤ x} the set of all nonnegative vectors.

Analogously, the set of all nonnegativematrices inRn×m is denoted
by Rn×m+ . For A = (aij)i,j ∈ Cn×m we define |A| := (|aij|)i,j, so
that |A| denotes the matrix obtained by taking the absolute value
entrywise.
A time scale T is a non-empty, closed subset of the reals R. For

the purpose of this paper we assume from now on that T is un-
bounded from above, i.e. supT = ∞. OnT the graininess is defined
by

µ∗(t) := inf {s ∈ T: t < s} − t.

A point t ∈ T is called right-dense if µ∗(t) = 0 and right-scattered
if µ∗(t) > 0. Similarly, t ∈ T is called left-dense if t − sup{s ∈
T: s < t} = 0 and left-scattered if t − sup{s ∈ T: s < t} > 0. For
a function f :T→ K and a point t0 ∈ T we say that f 1(t0) ∈ K is
the derivative of f in t0 if for every ε > 0 there is δ > 0 such that
for all t ∈ (t0 − δ, t0 + δ) ∩ T the inequality∣∣f (t0 + µ∗(t0))− f (t)− (t0 + µ∗(t0)− t)f 1(t0)∣∣
≤ ε

∣∣t0 + µ∗(t0)− t∣∣
is satisfied. If t0 is right-scattered, one obtains

f 1(t0) =
f (t0 + µ∗(t0))− f (t0)

µ∗(t0)
. (3)

An introduction into dynamic equations on time scales can be
found in [1].
For A ∈ Kd×d we consider the d-dimensional linear system of

dynamic equations on the time scale T

x1 = Ax. (4)

We recall the classical examples for this setup.

Example 1. If T = R we have a linear time-invariant system of
the form ẋ(t) = Ax(t). If T = hZ, then (4) reduces to (x(t + h) −
x(t))/h = Ax(t) or, equivalently, to x(t + h) = [Id + hA]x(t).

Let eA: {(t, τ ) ∈ T× T: t ≥ τ } → Kd×d denote the transition
matrix corresponding to (4), that is, x(t) = eA(t, τ )ξ solves the
initial value problem (4) with initial condition x(τ ) = ξ for ξ ∈ Kd
and t, τ ∈ T with t ≥ τ . Due to (3), for a right-scattered point
t0 ∈ Twe have

eA(t0 + µ∗(t0), t0) = Id + µ∗(t0)A. (5)

For a scalar system x1 = λx (λ ∈ C, 1+ µ∗(t)λ 6= 0 for all t ∈ T)
one obtains

|eλ(t, τ )| = exp
(∫ t

τ

lim
s↘µ∗(u)

log |1+ sλ|
s

1u
)
, (6)

cf. [1, Theorems 2.33 and 2.35].
The subsequent notions are recalled from [12].

Definition 2 (Exponential Stability). Let T be a time scale which is
unbounded above. We call system (4)
(i) exponentially stable if there exists a constant α > 0 such that
for every s ∈ T there exists K(s) ≥ 0 with

‖eA(t, s)‖ ≤ K(s) exp(−α(t − s)) for t ≥ s,
(ii) uniformly exponentially stable if K can be chosen independently
of s in the definition of exponential stability.

Observe that K(s) ≥ 1 follows from the definition for t = s.
In general, exponential stability does not imply uniform ex-

ponential stability [12]. The existence of a uniformly exponen-
tially stable system can only be guaranteed if the time scale T has
bounded graininess [13, Theorem 3.1].
In [13, Example 4.1] it is shown that exponential stability of

(4) cannot be characterized by the spectrum of its matrix, whereas
uniform exponential stability is determined by the spectrum. Note
that although the following proposition is only proved for a real
matrix in [13, Theorem 3.2] the statement remains true for an
arbitrary complex matrix without any modification in the proof.

Proposition 3 ([13, Theorem 3.2]). For A ∈ Kd×d system (4) is
uniformly exponentially stable if and only if system

x1 = λx (7)

is uniformly exponentially stable for every λ ∈ σ(A).

Sincewewant to consider stability radiiwith respect to uniform
exponential stability, we denote
USC(T) = {λ ∈ C: system (7) is uniformly exponentially stable}.
So, for A ∈ Kd×d system (4) is uniformly exponentially stable if and
only if σ(A) ⊂ USC(T).

Remark 4. (i) Since uniform exponential stability is robust it
follows thatUSC(T) is an open set [13, Proposition 3.1].

(ii) For any h ≥ max{µ∗(t): t ∈ T} the system

x1 =
−1
2h
x

is uniformly exponentially stable [13, Proof of Theorem 3.1].
On the other hand, for any α > 0 the system

x1 = αx

is not exponentially stable. Therefore, 0 is contained in the
boundary ofUSC(T).

(iii) Consider a scalar system (7). If there is t0 ∈ T such that
1 + µ∗(t0)λ = 0, then x(t) = 0 for all t ∈ T, t ≥ t0, in
particular (7) is uniformly exponentially stable (which follows
directly from (5)). Such systems are called non-regressive,
cf. [1, Definition 2.32].

In a particular case the notions of exponential stability and
uniform exponential stability coincide. We call a time-scale
periodic if there exists a constant p > 0 such that for every t ∈ R
we have t ∈ T if and only if t + p ∈ T. In this case p is called a
period of the time-scale. Clearly, if a time scale is only given as a
subset of [a,∞) and satisfies a periodicity condition there, it may
be extended to a periodic time scale that is unbounded above and
below.
The following proposition links the results in [13,12] and will

be useful in the discussion of examples below.
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