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a b s t r a c t

In this paper we compare experimental data and simulations based on a semiclassical model in order to
investigate the relative importance of a several scattering mechanisms on the mobility of graphene nano-
ribbons. Furthermore, some new experimental results complementing the range of ribbon widths avail-
able in the literature are also reported.

We show that scattering with remote phonons originating in the substrate insulator can appreciably
reduce the mobility of graphene and it should not be neglected in the interpretation of graphene mobil-
ity data. In fact by accounting for remote phonon scattering we could reproduce fairly well the experimen-
tally observed dependence of the mobility on the ribbon width, the temperature and the inversion density,
whereas the agreement with experiments is much worse when remote phonons are not included in the
calculations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to its high carrier mobility [1,2], graphene is being widely
investigated as an alternative channel material for future
MOSFETs. The absence of an energy gap and the consequent high
band-to-band tunneling (BBT) rate result in graphene MOSFETs
(GFETs) with large off currents and undesirable ambipolar behav-
ior, which seriously limit the use of GFETs for digital circuit
applications. Patterning graphene into nano-ribbons (GNRs)
opens a gap, but this is associated to a much lower mobility
compared to large area monolayer flakes, as predicted by the
modeling results in [3] and then confirmed by experiments [4].
In [3], the ribbon width (W) dependence of the mobility is
explained based on the modification of the band structure with
the GNR width. Only phonons originating in the GNR were in-
cluded in the model of [3]. Ref. [5] instead shows that edge
roughness scattering becomes the dominant collision mechanism
for W below approximately 4 nm. Combining the phonon-limited
mobility (computed based on a simple analytical band structure)
with the edge roughness, defects and impurity limited mobility
given by the Non-Equilibrium Green’s Function calculations of
the transmittance of randomly generated GNRs, it was

concluded in [6,7] that phonons, edge-roughness and defects
jointly contribute to reducing the mobility as the GNRs get
narrow.

The models in [3,5,6,8] describe electrons in the GNR as a 1D gas
and are thus expected to be accurate for narrow ribbons but also
difficult to calibrate with experimental data, because all the model
parameters have to be simultaneously adjusted on the few and
disperse measurements available for W < 10 nm. To overcome this
limitation, in this paper we employ an energy model [9] where
quantum corrections to the 2D dispersion relationship of graphene
sheets are introduced in order to cover a wide range of W spanning
from few nanometers to microns. Different scattering mechanisms
have been calibrated on independent experiments. Our model
includes the scattering due to the remote phonons originating in
the polar substrate, and extends the work presented in [10] by
comparing the simulation results with a much broader set of
experimental data as a function of ribbon width, inversion density
and temperature.

2. Simulation model

The simulation model employed in this work is based on the
semi-classical approach. The Boltzmann–Transport–Equation is
solved using the Monte Carlo method. The dispersion relationship
is given by the analytical expression [9]:
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which has been validated by direct comparison against tight-
binding calculations of GNRs with various widths including edge
disorder [9,11]. The density of states corresponding to the energy
relation of Eq. (1) is in much better agreement with the tight-bind-
ing calculations mentioned above than the one derived from a 1D
representation of the carrier gas. A more detailed discussion about
the differences in using a 1D or a 2D carrier gas description in GNRs
can be found in [9].

In this paper we consider uniform situations where a constant
electric field Fx is applied in the x direction, so the solution of the
Boltzmann–Transport–Equation with the Monte–Carlo technique
consists in free-flights during which kx is varied by eFxtFF/⁄, where
tFF is the free-flight duration, stochastically selected using the self-
scattering technique. The position along x of the particle does not
matter, since we assume uniformity along the device length. On
the other hand, we keep trace of the y position in order to account
for edge roughness (ER), that is treated as a diffusive reflection at
the edges, similarly to [12]. This is a worst case scenario compared
to silicon inversion layers, where only a fraction of the reflections
at the interface are diffusive, whereas the others are specular.
The y position is modified during the free-flight by vytFF, where
the group velocity vy along y is obtained deriving Eq. (1) over ky

(dividing by ⁄).
Free-flights are interrupted by scattering events. We include

scattering with: phonons (elastic and inelastic) originating in the
GNR (labeled as PH) and remote phonons originating in the polar
dielectric (RP). The expressions for the scattering rate with elastic
and inelastic phonons originating in the GNR can be found in [9].

As for RP scattering, we have extended the model in [13] to the
dispersion relationship given by Eq. (1). The scattering rate is given
by:
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where the E–k, k–E and dk/dE relationships are easily derived from
Eq. (1) and h is the angle between the initial and final wave-vector.
Since we consider extended states with a density of states similar to
the one of a 2D carrier gas [9], the wave-functions are assumed to
be the same as in a large graphene layer and the spinor overlap
factor is (1 + cosh)/2. The term SVV is given by:
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where e1 is the permittivity of the top material (vacuum in the cases
considered in this paper where no top-gate is present), e0

2 and ei
2 are

the low frequency and intermediate frequency permittivity of the
SiO2 substrate (bottom material). Note that Eq. (3) has no singular-
ities because, due to the finite energy difference between the initial
and final state, the magnitude Q of the scattering induced change in
the carrier wave-vector is always non null.

The remote phonon energy ERP = ⁄xSO is related to the energy of
the lowest TO mode in the substrate ⁄xTO by

xSO ¼ xTO
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The distance d between the GNR and the substrate is not pre-
cisely known and is assumed to be zero in the following (perfect
adhesion). In fact we verified that d values up to a few Angstroms
do not appreciably change the results, essentially because the term
exp(�2Qd) is close to 1.0 for the average values of the scattering
induced exchange wave-vector Q. It should be noted that the mod-
el for RP scattering does not contain any adjustable parameter.

In the Monte–Carlo algorithm, RP scattering is implemented as
follows. The total scattering rate SRP(E) (Eq. (2)) is used to deter-
mine the free-flight duration (summed to the scattering rate for
the local phonons). When RP is selected as the scattering mecha-
nism responsible for the interruption of the free-flight, the deflec-
tion angle h is selected based on the relative contribution to the
integral in Eq. (2). To enforce the Pauli exclusion principle, scatter-
ing events (RP and PH) are rejected based on the occupation of the
final state.

Our treatment of the scattering with remote phonons does not
account for a possible coupling between the lattice polarization of
the back oxide and the electronic polarization of the graphene, in
other words we do not include coupling between phonon and plas-
mon modes [14]. The phonon–plasmon coupling is a delicate mat-
ter, whose conclusive assessment is beyond the scope of the
present work and whose quantitative investigation demands an
accurate determination of both the real and the imaginary part of
the graphene polarizability. In this respect, the analytical results
for the graphene polarizability reported in [15,16] (and derived
for T = 0 K) show that the imaginary part of the polarizability is
non null in a wide region of the energy versus wave-vector plane.
This implies that a large part of the coupled phonon–plasmon
modes undergo strong Landau damping and cease to be collective
excitations [17,18]. In the region of Landau damping not only the
phonon–plasmon coupling is suppressed but also the screening
of the RP modes due to the electronic polarizability of the graphene
layer should not be included in the calculation, so that it is ques-
tionable to describe the screening by simply dividing the RP matrix
elements by the graphene static dielectric function [16,8]. Given
the very complicated and still debated theoretical framework, we
embraced a relatively simple picture and did not include the
graphene polarization in our calculations, thus neglecting the pho-
non–plasmon coupling. A recent publication [18] has shown that
phonon–plasmon coupling is essentially negligible in silicon de-
vices with SiO2 or high-k dielectrics in all cases of practical interest.
While the same conclusion is not granted for graphene devices, the
analysis in [18] suggests that using the static dielectric function for
the screening of RP most likely leads to a significant overestimation
of the screening effect.

3. Device fabrication and mobility measurements

Low-field mobility was measured on samples fabricated by the
exfoliation method and deposited on a silicon substrate with
90 nm thermally grown SiO2. The contacts were fabricated by
structuring a poly methyl methacrylate (PMMA), lift off mask with
ebeam lithography and subsequent deposition of 50 nm of nickel.
After lifting off the residual nickel the GNRs were defined in hydro-
gen silsesquioxane (HSQ) resist with e-beam. Then the uncovered
graphene was etched in a reactive ion etch oxygen plasma. The
GNR width is approximately 150 nm. The mobility has been
extracted in four terminal devices according to:

l ¼ IDSLint

WQ SVDS;int
ð5Þ

where Lint is the length of the internal probes; the inversion charge
QS has been estimated considering the capacitance of the back-gate
contact, neglecting the contribution of the quantum capacitance
that is not expected to be critical due to the large thickness of the
back-oxide. Describing the capacitance of the back-gate as simply
COXWLint may introduce a small error in the determination of QS,
since the formula applies to a plate capacitor, whereas in our case
W is only approximately 150 nm implying that the fringing capaci-
tance is not negligible (since the back oxide is 90 nm thick). So, the
capacitance should be larger in the GNR case resulting in lower
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