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a b s t r a c t

We derive a sufficient condition that a flow captures the dynamics on an invariant submanifold. This
leads to a refinement of the LaSalle invariance principle. As a consequence, we generalize a well-known
global asymptotic stability result of nonlinear cascade systems to show global convergence to a compact
invariant set. This includes the case where a globally asymptotically stable system is coupled to a
Morse–Bott flow.

© 2009 Published by Elsevier B.V.

1. Introduction

Convergence of nonlinear cascade systems is a challenging
topic, with interesting links to areas such as e.g. persistent
population dynamics in mathematical biology [1], convergent
activation dynamics of neural networks [2], asymptotic behavior
of time-varying nonlinear differential equations [3] and feedback
stabilization problems in nonlinear control theory [4]. The simplest
type of a cascade flow consists of two nonlinear differential
equations with a coupling structure as

ẋ = f (x, y) (1)
ẏ = g(y). (2)

Here the driving dynamics (2) evolve on Euclidean space Rm, with
0 ∈ Rm as a globally asymptotically stable equilibrium point.
The controlled dynamics (1) are assumed to evolve on a smooth n-
dimensional manifoldM , such that the zero dynamics

ẋ = f (x, 0) (3)

globally converge to a compact invariant subset Λ of M . In such
a situation it is not guaranteed a priori that the cascaded flow
(1) and (2) will also converge to Λ × {0}. In fact, without further
assumptions, such a persistence property of the dynamics will not
hold.
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The easiest and best understood situation is that when both
the driving dynamics (2) and the zero dynamics (3) globally
converges to asymptotically stable equilibrium points x0 and y0,
respectively; see e.g. [5,6,4]. Then the composed system (1) and
(2) is locally asymptotically stable, but may still fail to be globally
asymptotically stable. A simple example that exhibits this loss of
global asymptotic stability is the system

ẋ = x(x2y2 − 1) (4)
ẏ = −y, (5)

which is locally asymptotically stable around (0, 0) but has
x2y2 = 2 as another invariant manifold (on which solutions
go to infinity) [4,7]. The main difficulty in establishing global
convergence for such flows is to prove, that each trajectory of (1)
and (2) is forward bounded. This is immediately implied by the
well-known (and restrictive) BIBO condition, i.e. by the property
that the solutions of ẋ = f (x, u) are forward bounded for every
bounded input function u. Once this condition is satisfied, global
convergence of (1) and (2) to the equilibrium point (x0, y0) holds.
In several applications the zero dynamics are not globally

convergent to a single equilibrium point, so that the existing
convergence theory is not immediately applicable. Specifically,
in this paper, we are interested in extending the theory to the
more general situation, where the zero dynamics (3) is known to
converge to a possibly infinite set Λ ⊂ M of equilibria. Here,
even if the solutions are forward bounded, two new phenomena
arise, which are not present in the simple asymptotically stable
type of systems discussed above. First, to ensure convergence of
the cascade flow to Λ × {0} requires additional assumptions.
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For example, just checking pointwise convergence of the zero
dynamics to single equilibrium points is not enough to guarantee
the global convergence of (1) and (2). The key difficulty here is in
the potential existence of homoclinic orbits or, more generally, of
cyclic trajectory paths of the zero dynamics, as their presence may
destroy global convergence of the composed system. The example

ẋ = x(1−
√
x2 + y2)− y(b|y| + z2) (6)

ẏ = y(1−
√
x2 + y2)+ x(b|y| + z2) (7)

ż = −cz (8)

of a Lipshitz-continuous vector field by [3] (see [8] for a smooth
variant) demonstrates this phenomenon very clearly, i.e. the loss
of global convergence if a non-cycle condition on the invariant sets
is violated. The main point to note here is that the flow on S1×0 is
cyclic, since the upper part of the unit circle flows to (−1, 0), while
the lower part converges to (1, 0). In particular, for b > 2c > 0,
z 6= 0, (x, y) 6= (0, 0), the solutions can be shown to converge to
the entire unit circle S1 × 0, while the flow on S1 × 0 converges
to one of the two equilibria (1, 0), (−1, 0). Thus the ω-limit sets
of points that start off the circle S1 × 0 are strictly larger than the
ω-limit sets of points starting on S1 × 0. In the dynamical systems
literature such phenomena are referred to asΩ-explosions.
Second, even if convergence to the set of equilibria is

established, this does not necessarily imply pointwise convergence
to a single equilibrium point. Such pointwise convergence may fail
even for smooth gradient systems, as the classical ‘Mexican hat’
example by Curry [9] shows. This is a gradient system in R2 with
trajectories converging to a full circle of equilibrium points. Thus
pointwise convergence to equilibria requires further assumptions,
such as normal hyperbolicity of the zero dynamics around the
equilibria.
These two aspects, i.e. pointwise convergence to equilibria and

the avoiding ofΩ-explosions, are addressed by suitable conditions
in the subsequent two main results of this paper (for precise
definitions see later). The first theorem treats the general case of
convergence to compact isolated invariant sets, while the second
result establishes pointwise convergence for Morse–Bott zero
dynamics.

Theorem 1. Let f : M × Rm → TM be a smooth family of complete
vector fields on a Riemannian manifold M and let g : Rm → Rm
be a smooth vector field that has 0 as a globally asymptotically stable
equilibrium point. Let (x, y) ∈ M × Rm be any initial point which
generates a forward bounded trajectory of (1) and (2). Assume that
one of the following two conditions hold.

(i) The zero dynamics ẋ = f (x, 0) is a gradient flow of a smooth
function φ : M → R with compact sublevel sets, such that φ
is constant on each connected component Λi of the set of critical
pointsΛ = Λ1 ∪ · · · ∪Λk.

(ii) M is compact and there exists a Morse decompositionΛ = Λ1 ∪
· · · ∪Λk by disjoint, compact invariant sets of the zero dynamics
flow on M × {0}.

Then the ω-limit set ω(x, y) is a chain transitive subset of one of
the Morse setsΛi.

Thus–under the global asymptotic stability assumption on ẏ =
g(y)– if the zero dynamics are defined by a smooth gradient
vector field onM satisfying (i), then the trajectories of the cascade
system (1) and (2) converge to the set of equilibrium points onM .
Moreover, as is subsequently shown, pointwise convergence holds
if the set of equilibria satisfies a normal hyperbolicity condition.
We conjecture, that pointwise convergence to an equilibriumpoint
holds, whenever the zero dynamics is a real analytic gradient flow
onM .

Theorem 2. Assume that every forward trajectory of the cascade
system (1) and (2) is bounded, with ẏ = g(y) globally convergent
to a locally exponentially stable equilibrium point 0 ∈ Rm. Assume
further that the limiting dynamics ẋ = f (x, 0) are Morse–Bott on M.
Then every solution (x(t), y(t)) of (1) and (2) converges to a single
equilibrium point of (3) in M × {0}.

In the above result, the assumed non-cycle condition on the
zero dynamics is crucial. The example (6)–(8) shows that there
is room for further theoretical improvements, even if the non-
cyclicity condition fails, whenever the speed of the zero dynamics
is significantly smaller than that of the driving dynamics. We refer
to [2] for results in this direction.

2. Convergence to isolated invariant sets

Before stating and proving our main results, we recall some
basic facts from the qualitative theory of differential equations. The
crucial result used subsequently is the Butler–McGehee Lemma for
convergence to isolated invariant sets. In the sequel we assume
that M is a complete connected Riemannian manifold; such a
Riemannian metric exists on every smooth manifold, but explicit
forms of such will not be needed in the subsequent arguments. Let
dist(x, y) denote the minimal length of piecewise smooth curves
that connect a point x ∈ M with y ∈ M . This defines a metric on
M , which is complete by the Hopf–Rinow theorem. The associated
topology coincides with the manifold topology and therefore any
continuous map on M is also continuous with respect to this
metric.
Consider a smooth, complete vector field f : M → TM on a

Riemannian manifold M , let φ : R × M → M, (t, x) 7→ φt(x)
denote the associated flow. The ω-limit set of a point x ∈ M then
is the set

ω(x) :=
{
lim
k→∞

φtk(x) | tk > 0, tk →∞
}
. (9)

Similarly, the α-limit set is defined by α(x) := {limk→∞ φtk(x) |
tk < 0, tk → −∞}. Detailed information about such limit
sets becomes crucial in classical stability theory. For example, the
celebrated invariance principle [10] asserts that the omega limit
set of any positively bounded trajectory {φt(x) | t ≥ 0} is a
nonempty, compact, connected subset ofM , that is invariant under
the flow. In the sequel, we need a stronger form of the invariance
principle that goes back to [11,12]. Let A ⊂ M denote a nonempty
invariant set for the flow of the vector field f onM . Then A is called
internally chain transitive, if for any a, b ∈ A and any ε, T > 0 there
exist finitely many points x1, . . . , xm ∈ A with x1 = a, xm = b,
and times T1, . . . , Tm−1 ≥ T such that dist(φTi(xi), xi+1) < ε
for i = 1, . . . ,m − 1. The sequence x1, . . . , xm then is called an
(ε, T )-chain in A connecting a with b. The amazing fact then is
that limit sets are always internally chain transitive. We formulate
the result using Lyapunov functions, although general statements
within the abstract context of topological dynamics are possible;
see [13,11,12]. Recall, that a smooth function V : M → R with
compact sublevel sets {x ∈ M | V (x) ≤ c}, c ∈ R, is called a
Lyapunov-function of f , if the Lie derivative Lf V (x) := dV (x)f (x)
satisfies Lf V (x) ≤ 0 for all x ∈ M .

Proposition 3 (Strong Invariance Principle). Let f : M → TM be
a smooth complete vector field on a manifold M and V : M → R a
Lyapunov functionwith compact sublevel sets. Let A denote the closed,
maximal invariant subset of {x ∈ M | Lf V (x) = 0}. Then A is compact
and the omega limit set ω(x) of any point x ∈ M is a nonempty,
compact, connected, invariant subset of A that is internally chain-
transitive.
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