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a b s t r a c t

We give necessary and sufficient conditions for both the existence of minimal factorization of a rational
function of N complex variables and the cascade representation of a Fornasini–Marchesini linear system.
In particular, we generalize the well known result of Bart, Gohberg, Kaashoek and Van Doren onminimal
factorization of a rational function of one complex variable.

© 2008 Elsevier B.V. All rights reserved.

1. Preliminaries

1.1. Introduction

Fornasini–Marchesini linear systems, introduced in 1976 in [4],
are defined by sets of linear difference equations of the form

X(t1, . . . , tN) = A1X(t1 − 1, . . . , tN) + · · ·

+ ANX(t1, . . . , tN − 1) + B1U(t1 − 1, . . . , tN)
+ · · · + BNU(t1, . . . , tN − 1) (1.1)

Y(t1, . . . , tN) = CX(t1, . . . , tN) + DU(t1, . . . , tN). (1.2)

Here U = {Uα}α∈NN is the input signal, Y = {Yα}α∈NN is the output
signal and X = {Xα}α∈NN is the state of the system, and the various
matrices are of appropriate sizes.Wedenote the linear system (1.1)
as

L =

[
A B
C D

]
, where A = {A1, A2, . . . , AN}, and

B = {B1, B2, . . . , BN}.

We denote by z = (z1, . . . , zN). When the initial state is equal to 0,
we have

Y(z) = R(z)U(z),
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where U(z) and Y(z) are the z-transforms of the input and output
respectively, and where

R(z) = D + C

(
In −

N∑
j=1

zjAj

)−1 N∑
j=1

zjBj (1.3)

is the transfer function of the system. In this expression, n is called
the dimension of the state space. We denote the realization (1.3)
by

R(z) = [A,B, C,D](z).

We showed in [1] that any matrix-valued rational function R(z)
analytic in a neighborhood of the origin can be realized as the
transfer function of a system (1.1), that is, of the form R(z) =

[A,B, C,D](z) for a suitable choice of {Aj}
N
j=1, {Bj}

N
j=1, C and D.

In the presentwork, wewill restrict ourselves to the casewhere
the input and the output share the same space (and hence the
transfer function is square) and the transfer function is invertible
at the origin. Unless stated otherwise, we will always assume
D = Ip. We discuss two closely related topics: factorization of the
transfer function and cascade representation of the linear system.
In particular, we generalize the followingwell known theorem due
to Bart, Gohberg, Kaashoek and Van Dooren (see [3]), determining
when a rational function of one complex variable admits aminimal
factorization:

Theorem 1.1. Let R(z) = Ip +C(In −zA)−1zB be a minimal realization
of the transfer function R(z). Then R(z) admits a minimal factorization
if and only there exists a decomposition Cn

= U ⊕ V such that U is A
invariant and V is A×

= A − BC invariant.
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The paper is organized as follows: we devote the rest of this
section to giving some more definitions and background material.
In Section 2 we study the problem of minimal factorization, and in
Section 3 we present the main result of the paper from the linear
system point of view.

1.2. Minimal realization and similarity

Two Fornasini–Marchesini systems

L1 =

[
A1 B1
C1 D1

]
and L2 =

[
A2 B2
C2 D2

]
are said to be similar if D1 = D2 and if there exists an invertible
matrix S such that

A1,j = S−1A2,jS, C1 = C2S, B1,j = S−1B2,j,

for j = 1, 2, . . . ,N.

Definition 1.2. Let R(z) be a rational function analytic in a
neighborhood of the origin. A realization R(z) = [A,B, C,D](z)
is said to be a minimal realization if for every other realization
R(z) = [A1,B1, C1,D1](z) the dimension of the matrices A1,j is
larger or equal to the dimension of the Aj. If R(z) = [A,B, C,D](z)
is a minimal realization, the dimension of the Aj is called the FM-
degree of the function R(z).

We use the notation of FM-degree rather than degree for the
following reason: When realizing a transfer function of N complex
variables, one may consider more than one structure; in return,
different realizations will correspond to different types of linear
systems (such as the Roesser model and its corresponding
realization). In consequence, different realizations may lead to
different notions of minimality.

Since in the present study we only refer to the
Fornasini–Marchesini model, we will omit the fact that the degree
of a realization is the FM-degree – still it should be understood that
whenever the notations of minimality and degree are used – the
intent is that of FM-degree.

We will denote the FM-degree of R(z) by deg(R(z)). It is a well
known fact that while in the one dimensional case, all minimal
realizations of a given transfer function are similar, this is no
longer the case for N-dimensional systems. In the setting of one
dimensional systems, it is also well known that the degree of a
transfer function (as defined above) coincides with the McMillan
degree of the function- the number of singular points of R(z)
(counting multiplicity and ∞). In the multidimensional setting
there is no such connection. In fact, it is not clear at all how to
define theMcMillan degree of amulti-variable function, as amulti-
variable polynomial is – in general – not a product of linear terms.

Still, from a system theoretic point of view, the degree of
a function R(z) can manifest itself in a fairly simple manner:
Assume the input output relation is given via the transfer function.
By the main theorem of [1], this input–output relation can be
realized through a Fornasini–Marchesini linear system. Clearly,
many (in fact, infinitely many) systems may be considered. A
natural question is then:what is theminimal possible dimension of
the state space needed to realize the input–output relation defined
by R(z)? It is a trivial observation that the answer to the last
question is exactly the FM-degree of R(z).

1.3. Multiplication and inversion of transfer functions

Let R1(z) = [A1,B1, C1,D1](z) and R2(z) = [A2,B2, C2,D2](z) be
two rational functions, such that R1(z)R2(z) iswell defined. It iswell
known (and can be easily obtained by direct calculations) that the

product R(z) = R1(z)R2(z) can be written as R(z) = [A,B, C,D](z)
where (j = 1, 2, . . . ,N)

Aj =

(
A1,j B1,jC2
0 A2,j

)
, Bj =

(
B1,jD2
B2,j

)
,

C =
(
C1 D1C2

)
, D = D1D2.

(1.4)

(See, for instance, [2, p. 6], [5, Chapter 7] for the one variable case,
the multi-variable case is a trivial generalization.)

From these formulas it is clear that for every rational functions
R1(z) and R2(z) it holds that

deg(R1(z)R2(z)) ≤ deg(R1(z)) + deg(R2(z)). (1.5)

However, in the general case, the above realization need not be
minimal, hence it is not clear when (and if) equality is met in (1.5).
This issue is studied in Section 2.

Next, assume that R(z) isCp×p-valued rational function such that
R(0) = Ip. Denoting

A×

j = Aj − BjC, j = 1, 2, . . . ,N, (1.6)

one can show through direct calculation that R−1(z) has the
following realization:

R−1(z) = Ip − C

(
I −

N∑
j=1

zjA
×

j

)−1 N∑
j=1

zjBj.

In the present study, the above formula for the inverse will not be
needed, but expressions (1.6) play a key role (see Theorems 2.2 and
3.2).

1.4. Cascades of linear systems

Consider the case where we are given two different Fornasini–
Marchesini systems

L1 =

[
A1 B1
C1 D1

]
and L2 =

[
A2 B2
C2 D2

]
,

with transfer functions R1(z) and R2(z) respectively. Assume that
we wish to use the output of the second system as the input of
the first one. The input output relation of the new system can be
written as:

L =


{(

A1,j B1,jC2
0 A2,j

)}N

j=1

{(
B1,jD2
B2,j

)}N

j=1(
C1 D1C2

)
D1D2

 . (1.7)

(See [5] p. 270 for the one dimensional case, generalization to
N-dimensional systems is straightforward.) We will refer to the
system L as the cascade product of the two systems L1 and L2,
and will denote it by L1 ◦ L2.

With L =

[
A B
C D

]
, by formula (1.4), it is easy to see that

R(z) = [A,B, C,D](z) is a realization for the rational matrix valued
function R1(z)R2(z).

2. Minimal factorization of a transfer function

As stated before, the input–output relation can be given
completely via the transfer function. In this section, we provide the
main contribution of this study from the transfer function point of
view (Theorem 2.2). We start with the following definition:

Definition 2.1. Let R(z) be a Cp×p-valued rational function. The
factorization R(z) = R1(z)R2(z) (here Rj : CN

→ Cp×p, j = 1, 2) is
minimal if deg(R(z)) = deg(R1(z)) + deg(R2(z)).
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