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a b s t r a c t

We answer two open questions on copositive Lyapunov functions which were recently posed by
M.K. Çamlıbel and J.M. Schumacher in the book Unsolved Problems in Mathematical Systems and
Control Theory, edited by V.D. Blondel and A. Megretski [M.K. Çamlibel, J.M. Schumacher, Copositive
Lyapunov functions, in: V.D. Blondel, A. Megretski (Eds.), Unsolved Problems in Mathematical
Systems and Control Theory, Princeton University Press, 2004, pp. 189–193. Available online at
http://press.princeton.edu/math/blondel/]. These questions are: what are necessary and sufficient
conditions for the existence of a Lyapunov function for a linear system which is defined over a cone?
How can this be extended to switched linear systems where the system matrix varies over time?
We present conditions answering these questions. Our conditions amount to checking feasibility or

infeasibility of a system of linear inequalities.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider a linear system of the form ẋ = Ax with the initial
value condition x(0) = x0. It is well known that this system is
asymptotically stable if and only if a quadratic Lyapunov function
xTPx exists, i.e., if and only if there exists a symmetricmatrix P such
that the Lyapunov inequality is fulfilled, i.e.,

P � 0 and ATP + PA ≺ 0, (1)

where the notation M � 0 (M ≺ 0) indicates that M is positive
(negative) definite.
In some applications, one is interested in so called positive

systems, i.e., systems for which x(0) ≥ 0 (componentwise) implies
x(t) ≥ 0 for all t ≥ 0, cf. [2]. More generally, onemay be interested
in a system

ẋ = Ax for Cx ≥ 0 (2)

for a given matrix C ∈ Rm×n. In this setting, stability of the system
is related to existence of a matrix P such that the definiteness
conditions of (1) hold with respect to the cone C = {x ∈ Rn :
Cx ≥ 0} rather than with respect to the whole space Rn.
Semidefiniteness with respect to a cone C is also called

copositivity with respect toC. We say that amatrixM is copositive

w.r.t. C (or C-copositive, denoted by M
C
� 0) if x ∈ C implies

xTMx ≥ 0. If equality only holds for x = 0, then M is strictly
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C-copositive (M
C
� 0). A matrix which is copositive w.r.t. Rn

+

is simply called copositive. C-copositivity is a generalization of
both copositivity (choose C = Rn

+
) and positive semidefiniteness

(choose C = Rn). For a good introduction to this topic see [3].
When discussing stability of system (2), C-copositivity arises

naturally when we ask for generalizations of the Lyapunov
inequality (1). This is the first problem posed by Çamlıbel and
Schumacher [1]:

Problem 1: Let a square matrix A and a cone C = {x ∈ Rn :
Cx ≥ 0} be given. Determine necessary and sufficient conditions

for the existence of a symmetric matrix P such that P
C
� 0 and

ATP + PA
C
≺ 0.

In contrast to positive definiteness, copositivity of a matrix
cannot be checked through its eigenvalues. In fact, checking
whether a given matrix is copositive is a co-NP-complete problem
(see [4]), i.e., no polynomial algorithm for this is known. Several
conditions for copositivity of a matrix have been developed (cf. [5,
6]), most of which rely on properties of principal submatrices.
Spectral properties of copositive matrices have been studied in [7].
C-copositivity with respect to polyhedral cones has been dealt
with in [8–10].
None of these approaches seems appropriate in our context

because all of them propose conditions for a given fixed matrix
to be copositive. Our problem is a different one: given a system
matrix A and a cone C, decide whether or not there exists a C-
copositive matrix with ATP + PA

C
≺ 0. Geometrically, this problem

can be formulated as: decide whether the two matrix cones {P ∈

Rn×n : P
C
� 0} and {P ∈ Rn×n : ATP + PA

C
≺ 0} intersect.

As a second step of generalization, one may want to consider
a system where the system matrix A and the cone C are not fixed,
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but switch betweenmatrices A1, A2 and conesC1,C2, respectively,
over time. This means, one considers a system of the form

ẋ = Aix for Cix ≥ 0, i = 1, 2. (3)

Finding conditions that guarantee asymptotic stability of a
piecewise linear system ẋ = Aix with Ai in some family of
matrices has attracted a considerable amount of attention, cf. [11,
12] and references therein, whereas switched systems over cones
have not yet been studied thoroughly. Problem 2 of Çamlıbel and
Schumacher [1] is related to this question:

Problem 2: Let two square matrices A1, A2 and two cones C1 =
{x ∈ Rn : C1x ≥ 0} and C2 = {x ∈ Rn : C2x ≥ 0} be given.
Determine sufficient conditions for the existence of a symmetric

matrix P such that P
Ci
� 0 and ATi P + PAi

Ci
≺ 0 for i = 1, 2.

For the case n = 2, necessary and sufficient conditions, which
can be efficiently checked, are presented in [13]. It is also shown
that these do not hold in dimensions higher than 2. In [14],
necessary and sufficient criteria for the existence of common linear
copositive Lyapunov functions of positive systems (i.e., the cone
considered is C = Rn

+
throughout) for arbitrary n are proven.

Unfortunately, to check those conditions one needs to investigate
2n matrices and check whether or not they are Hurwitz, which
limits this approach to small dimensions.
In the case C = Rn

+
and n ≤ 4 it is known (see [15])

that the cone of copositive matrices equals the Minkowski-sum
of the cone of positive semidefinite matrices and the cone of
entrywise nonnegative matrices. Therefore, in this situation the
copositive cone can be described by a finite system of linearmatrix
inequalities (LMIs), and thus the existence of P can be efficiently
checked using semidefinite programming techniques. In higher
dimensions, it is an open question whether there exists a finite
system of LMIs describing the copositive cone.
In this paper, we propose a method to answer the questions of

Problems 1 and 2 in general dimensions. Our approach does not
characterize classes of matrices Ai for which the answer is positive.
Instead, we focus on deciding algorithmically for given matrices Ai
and conesCiwhether or not there exists amatrix P with thedesired
properties.
In Section 2,we discuss copositivity of amatrixwith respect to a

coneC and provide necessary and sufficient conditions for amatrix
to be C-copositive. In Section 3, we show how these conditions
apply to solving Problems 1 and 2, and we illustrate the approach
by an example.

2. Conditions for cone-copositivity

In this section, we show how techniques developed in [16] for
copositive matrices can be applied to C-copositivity. We derive
sufficient conditions and show that these conditions eventually
capture all strictly C-copositive matrices.

C-copositivity of a matrix means that the induced quadratic
form is nonnegative for all x ∈ C. A first observation is that it
suffices to consider points of unit norm:

Lemma 1. Let ‖ · ‖ denote any norm on Rn. We have

M
C
� 0 ⇐⇒ xTMx ≥ 0 for all x ∈ C with ‖x‖ = 1.

An analogous result holds for M
C
� 0.

In our context, it turns out to be advantageous to use the
1-norm. We will use the notation

B1 := {x ∈ Rn : ‖x‖1 = 1}

to denote its unit sphere. The last lemma establishes that, when
formulating conditions forC-copositivity of amatrix, it is sufficient
to consider points in C ∩B1.

Note thatB1 ⊂ Rn is a union of (n− 1)-dimensional simplices
(i.e., a union of sets each of which is the convex hull of n affinely
independent points). The next lemma gives an easily verifiable
sufficient condition for nonnegativity of a quadratic form over a
simplex.

Lemma 2. Let ∆ be a simplex. Denote by V the set of its vertices and
by E the set of its edges. If

vTMv ≥ 0 (resp. vTMv > 0) for all v ∈ V , and

uTMv ≥ 0 (resp. uTMv > 0) for all (u, v) ∈ E,
(4)

then xTMx ≥ 0 (resp. xTMx > 0) for all x ∈ ∆.

Proof. Let V = {v1, . . . , vn}. We can represent each point x in
the affine hull of∆ by its uniquely defined barycentric coordinates
λ = λ(x) = (λ1, . . . , λn)with respect to∆:

x =
n∑
i=1

λivi with
n∑
i=1

λi = 1.

With this representation, we get

xTMx =

(
n∑
i=1

λivi

)T
M

(
n∑
j=1

λjvj

)
=

n∑
i,j=1

vTi Mvjλiλj.

For x ∈ ∆, we have λ(x) ≥ 0, whence (4) implies xTMx ≥ 0. �

In order to derive conditions for C-copositivity of a matrix, we
partition the relevant setC∩B1 into simplices and apply Lemma 2
to each of those. Observe that the cone C = {x ∈ Rn : Cx ≥ 0} we
are concerned with is a polyhedron, and that B1 = {x ∈ Rn :
‖x‖1 = 1} is a union of (n− 1)-dimensional polytopes. Therefore,
the intersection C ∩B1 of both is also a union of polytopes, and it
is not hard to find a simplicial partition of C∩B1. By this wemean
the following:

Definition 3. LetΩ be any set in Rn. A family P = {∆1, . . . ,∆m}
of simplices satisfying

Ω =

m⋃
i=1

∆i and int ∆i ∩ int ∆j = ∅ for i 6= j

is called a simplicial partition ofΩ .
For convenience, we denote by VP the set of all vertices of

simplices in P , and by EP the set of all edges of simplices in P .

Note that the set EP is not the same as VP × VP , because a
partitionP may contain more than one simplex, and for vertices u
and v from different simplices, (u, v) 6∈ EP .
If we are dealing with positive systems ẋ = Ax, i.e., if C = Rn

+
,

then we can start with P = {∆}, where∆ = {x ∈ Rn
+
: ‖x‖ = 1}.

Otherwise, we need to determine the intersection of C ∩ B1 and
find a simplicial partition thereof.
If the extremal rays of the cone C are known it is possible

to transform the cone-copositivity to ordinary copositivity using
Corollary 2.21 from [17].
Given a simplicial partition of C ∩B1, the next theorem gives a

sufficient condition for the matrix to be copositive:

Theorem 4. Let M be a symmetric matrix. Let P be a simplicial
partition of C ∩B1.

(a) If vTMv ≥ 0 for all v ∈ VP and uTMv ≥ 0 for all (u, v) ∈ EP ,
then M is C-copositive.

(b) If vTMv > 0 for all v ∈ VP and uTMv > 0 for all (u, v) ∈ EP ,
then M is strictly C-copositive.
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