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a b s t r a c t

A novel method is presented for controlling the amplitudes and stability of orbits generated from
Neimark–Sacker bifurcations in discrete-time systems. The technique is rooted in the frequency-domain
approach for the study of bifurcations in maps.
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1. Introduction

Oscillations appear frequently in many dynamical systems.
For that reason, scientists have been developing methods and
algorithms for analyzing and even controlling them. It has
been demonstrated that one of the most common causes of
this phenomenon is the existence of certain bifurcations [1].
In continuous-time systems, oscillations appear mainly due to
Hopf bifurcations. In discrete-time systems, however, the essential
cause is Neimark–Sacker (N–S) bifurcation or period-doubling
bifurcation.
Since bifurcations are related to the presence of nonlinearities

in the system, linear control methods are inadequate for changing
their characteristics. A proper way of obtaining some desirable
dynamical behaviors is to use bifurcation control techniques
[2–4]. Typical control objectives concerning oscillations are to
relocate the birth of a bifurcation to other parameter values, to
enlarge/reduce their amplitudes or to modify their stability. When
applying bifurcation control, it is usually required to preserve the
location and/or stability of the fixed points, so as to continue the
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original operation modes. This requirement can be met by using
homogeneous polynomials [5,6], highpass (‘‘washout’’) filters [7,8],
and some other techniques.
Bifurcation control research has evolved progressively and

systematically since the pioneering work of [9,10]. In particular,
several effective methods have been developed for discrete-time
systems. For example, stabilization of period-doubling bifurcations
is examined in [11], where both static and dynamic controllers are
discussed. A technique to deal with N–S bifurcations is presented
in [12]. These results complement those given in [13], in which
stabilization is accomplished by using quadratic functions. Other
methods related to the control or even anti-control of bifurcations
in maps can be found in [5,14–18].
Most of these results are derived by applying the center

manifold theorem and the normal form theory, using a state-space
representation of the system. An alternative method for analyzing
N–S bifurcations from a frequency-domain (FD) viewpoint is
proposed in [19,20]. Unlike the classical absolute stability criteria
for input–output systems presented in [21–23], this method not
only determines the critical condition for the existence of the
bifurcation but also provides approximations of the emerging
orbits via the Nyquist stability criterion, the harmonic balance
method and Fourier series analysis.
The aim of this paper is to show the potential of the FD

approach in the design of nonlinear control laws which modify
the characteristics of the oscillations but preserve the location and
stability of the fixed points. Two alternatives are shown: a dynamic
controller using washout filters to dissociate the control from the
equilibria, and a static controller using ad-hoc nonlinear functions.
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Fig. 1. Nonlinear discrete-time input–output system.

Fig. 2. Block diagram of the dynamic feedback controller.

A first attempt to control aN–Sbifurcationusing the FDmethodhas
been reported in [24] but the present article enhances the scope
and applications.
The paper is organized as follows. In Section 2, the FD approach

for the analysis of N–S bifurcations is reviewed. In Section 3,
two methods for controlling N–S bifurcations are presented. An
example is developed in Section 4. Some concluding remarks are
given in Section 5.

2. Preliminaries

Consider the input–output discrete-time multivariable system
S shown in Fig. 1 consisting of a closed-loop connection between a
linear block defined by anm× ` rational transfer matrix G (·), and
a memoryless nonlinear block given by a smooth (C r with r ≥ 3)
function f : Rm × Rs → R`. In the figure, µ ∈ Rs is the parameter
vector, z is the complex variable of the z-transform, vk ∈ R` is the
input (assumed to be 0) and yk ∈ Rm is the output.

Theorem 1. Let ŷ be a fixed point of S given by ŷ = −G(1;µ)f(̂y;µ).
The dynamical behavior of S in a neighborhood of ŷ is character-
ized as follows. Let λ̂(eiω;µ) be one eigenvalue of G(z;µ)J(µ) with
J(µ) = Dyf(̂y;µ)1 for z = eiω whose Nyquist diagram crosses the
critical point −1 + i0 at µ = µo and ω = ωo, with einωo 6= 1 for
n = 1, 2, 3, 4. If −1 + ξ(ω;µ)θ2, with ξ(ω;µ) 6= 0 (see Table 1)
intersects λ̂(eiω;µ) at a single point for µR 6= µo, then system S
presents a emerging orbit around ŷ for µR. The stability of the resulting
N–S bifurcation is given by index σ (see Table 1).

Proof. See References [19,20]. The proof is based on the technique
first proposed in [25], and extended in [26] for the analysis of Hopf
bifurcations in multivariable continuous-time systems. �

The FD technique is not restricted to systems of the form of
Fig. 1. A map xk+1 = Axk + Bg(xk;µ) with xk ∈ Rn, A ∈ Rn×n
(which may be 0), B ∈ Rn×` and g : Rm × Rs → R` can always
be transformed in a system S by choosing G(z;µ) = C[zI − (A +
BDC)]−1B and f(yk;µ) = Dyk − g(yk;µ) where yk = Cxk and
C ∈ Rm×n,D ∈ R`×m are arbitrary. The representation is not unique
and with the proper selection of C and D, the dimensions m of the
input space and ` of the output space of the equivalent system can

1 For the sake of simplicity, Dyf(̂y;µ)ij =
{
∂ fi(y;µ)/∂yj

}∣∣
y=̂y with f(·) =

[f1(·) . . . f`(·)]T and y = [y1 . . . ym]T; similar expressions will be used for higher-
order derivatives.

Table 1
Frequency-domain analysis of the orbits emerging from a N–S bifurcation.

Step 0 G(·), f(·), ŷ, J(·) and λ̂(·) such that λ̂(eiωo ;µo) = −1+ i0 are known.
Step 1 Calculate the left and right eigenvectors associated with λ̂(eiω;µ),

uTG(eiω;µ)J(µ) = uTλ̂(eiω;µ), G(eiω;µ)J(µ)v = λ̂(eiω;µ)v.
Step 2 Evaluate matrix H(z;µ) = [I+ G(z;µ)J(µ)]−1G(z;µ).
Step 3 Build matrices Q = D2y f(̂y;µ)v and L = D

3
y f(̂y;µ)v⊗ v as

qij =
∑m
p=1 D

2
ypyj fi (̂y;µ)v

p, lij =
∑m
p=1

∑m
q=1 D

3
ypyqyj fi (̂y;µ)v

pvq,

where i = 1, . . . , `, j = 1, . . . ,m, and vp, vq, fi(·) are the
components of v and f(·), respectively. Symbol ‘‘⊗ ’’ is the tensor
product operator.

Step 4 Find vectors v0 = −H(1;µ)Qv/4, v2 = −H(ei2ω;µ)Qv/4 and
p(ω;µ) = Qv+ Qv2/2+ Lv/8. Symbol ‘‘ · ’’ is the complex
conjugate operator.

Step 5 Obtain ξ(ω;µ) = −uTG(eiω;µ)p(ω;µ)/(uTv).
Step 6 Find ωR and θR from λ̂(eiω;µ) = −1+ ξ(ω;µ)θ2 for µR 6= µo.

If the solution exists, go to Step 7; otherwise, end the procedure.
Step 7 Evaluate Y0 = θ2R v0, Y1 = θRv and Y2 = θ2R v2 , and approximate the

orbit as yk = ŷ+ Re{Y0 + Y1eiωRk + Y2ei2ωRk}.
Step 8 Calculate σ = Re{γ p(ω;µ)},

γ = uTG(eiω;µ)/[eiωuTDzG(eiω;µ)J(µ)v]
at µ = µo and ω = ωo . If σ > 0 (σ < 0), the orbit is stable
(unstable) and the bifurcation is said to be supercritical (subcritical).
If σ vanishes, the bifurcation degenerates and the global behavior
will be more complex [20].

generally be made smaller than n. If such reduction is achieved,
bifurcation analysis in the frequency-domain could be easier to
perform than that in time-domain (in spite of the cumbersome
expressions of Table 1). The implications of controllability and/or
observability in the transformation and analysis of the map in the
FD can be found in [26,27].

3. Bifurcation control in the frequency-domain

Suppose system S experiments a N–S bifurcation. The emerging
orbits, while preserving the location and stability of the fixed
points, can be modified by using a nonlinear dynamic feedback
controller or even a nonlinear static feedback controller. In the
first case, the implementation of some highpass filters dissociates
the control action from the equilibria. In the second case, the
design of the control law is more demanding because it requires
exact knowledge of all the equilibrium points to preserve their
characteristics.

3.1. Dynamic controller

An outer loop is connected to the original system as shown in
Fig. 2. The following results are a formalization of those previously
reported in [24].

Assumption DC1. The dynamic block Gw(z; d) of Fig. 2 is a m ×
m diagonal matrix where the nonzero elements are scalar stable
highpass filters of the form gii(z; di) = (z − 1)/(z − 1 + di) with
i = 1, . . . ,m, and di ∈ (0, 2).

In general, di is chosen such that the cut-off frequency of the
highpass filter is smaller than the frequency of oscillation of S.

Assumption DC2. The static function fn(ywk ;K) : R
m
×Rv → R` of

Fig. 2 satisfies: (i) it is at leastC3 in its first argument; (ii) fn(0;K) =
0; (iii) Dyfn(0;K) = 0.

For instance, if ywk = [ yw,1k yw,2k ]
T, fn(·) could be a

homogeneous polynomial (with the linear and independent
coefficients equal to zero) of the form fn(ywk ;K) = κ1(y

w,1
k )2 +

κ2(y
w,2
k )2 + κ3y

w,1
k y

w,2
k with K as the gain vector K =

[ κ1 κ2 κ3]
T, or any other polynomial containing higher-order

terms.
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