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a b s t r a c t

Along with a resistivity measurement, the measurement of the Hall voltage can provide a useful charac-
terization of the electrical properties of a bulk semiconductor. Typically, both use a Van der Pauw-type
configuration on a thin, planar material. Ideally, this involves infinitesimal current and voltage contacts
on the periphery of a sample of infinitesimal thickness. When deviations from ideality occur, geometric
errors are introduced, which can have an important impact on the accuracy of the measurement. These
are in addition to errors such as those caused by offsets in the measurement system and any non-unifor-
mity in the applied magnetic field. Assuming an ideally-thin, rectangular sample, analyses of two differ-
ent measurement configurations of the Hall voltage are presented, illustrating the consequences of some
of these geometric errors. They are the result of a solution to an electrostatics boundary-value problem.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the author published two papers on an electrostatics
derivation of the Van der Pauw relationship for the resistivity of
a rectangular or square sample [1,2]. Deviations from ideality, with
respect to electrode placement and non-zero electrode size, and fi-
nite sample thickness were also discussed. As part of the evalua-
tion of the second paper, the reviewer raised a question
concerning the applicability of this method to a similar discussion
of a Van der Pauw-type measurement of the Hall voltage. It was
decided that, indeed, such a discussion would be of value, and it
is presented here. Since the thickness dependence of these results
would be very similar to those of the previous analysis, only the
limiting case of c ? 0, where c is the sample thickness, will be con-
sidered. This is, in fact, the situation of greatest practical interest.
Van der Pauw himself considered the Hall voltage, along with
resistivity, in his conformal-map treatment of both problems. His
method is rigorous for infinitesimal contacts placed on the periph-
ery of an ideally thin sample, but he presents approximate correc-
tion factors for only a circular sample and for one contact deviating
only slightly from ideality [3]. These he displays without proof. At
least one other discussion of this subject has been presented, but
the method of solution, termed the method of Corbino images,
and the sample geometries considered there are different from that
considered here [4]. Aside from [2], other papers have been
published concerning correction factors to the ideal Van der Pauw
geometry [5–7], as related to resistivity measurements only. These

three references utilize an infinite series of images or conformal
mapping. The one by Buehler and Thurber has already been com-
pared to the electrostatics treatment in [2], with respect to the
apparent impossibility of analytically deriving the result in [2]
from theirs. The paper by Smits involves only a collinear array of
contacts. The one by Perloff does treat a square array of contacts
on a rectangular sample, but only with respect to resistivity. Thus
all of these Refs. [3–7], overlap very little with the discussion pre-
sented here.

2. Measurement configurations

The two measurement configurations under consideration here
are shown in Fig. 1. These are also illustrated elsewhere in a discus-
sion of Hall voltage measurements [8]. In both cases, the sample is
a square having sides of length ‘‘a’’ and a small thickness ‘‘c’’. The
current pads are also square. As shown, current Io enters one pad
and leaves the other. Elsewhere, no current enters or leaves the
sample. In the case of configuration A, the imaginary lines connect-
ing the current pads and voltage points are parallel to the edges of
the sample. In configuration B, the arrangement is rotated by 45�,
so that those lines are along the diagonals. The analysis will be re-
stricted to maintaining these electrical contacts in symmetric posi-
tions with respect to the center of the sample, although the
method of solution does not require it. The voltage contacts will al-
ways be considered point-like and the parameters s, w, and d will
be allowed to vary independently, such that 0 6 s 6 a/2 (configura-
tion A), 0 6 s 6 a/

p
2 (configuration B), 0 6 w 6 a/2 (both configu-

rations), 0 6 d 6w/
p

2 (configuration A), and 0 6 d 6w
(configuration B). The upper limits on s and w and the lower limit
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on d simultaneously correspond to the ideal measurement config-
uration, while the upper limits on d prevent overlap of the pads.

We should note that these two measurement configurations are
the most different from each other, for the given symmetry. Rotat-
ing by more or less than 45� causes configuration B to more closely
resemble configuration A than it does here. Thus, the results of the
calculation are expected to be the more different than for any other
angle of rotation.

3. Basic relationships

When a uniform external magnetic induction, B, is applied per-
pendicular to the face of the sample in Fig. 1 (in the ±z-direction),
the Lorentz force deflects moving charge carriers in the plane,
causing charge to build up on the various surfaces. Eventually,
the resulting electric field exactly opposes the Lorentz force and
the process stops. In this steady-state situation, the electric cur-
rents are the same as they would have been had no magnetic
induction been applied. However, an additional electric field, EH,
now exists in the sample, which gives rise to the Hall voltage, VH.
We note that any magnetoresistive effects associated with sec-
ond-order terms in lB are being ignored, where l is the electron
or hole mobility, as are any self-generated magnetic fields by the
currents themselves. Ignoring both is typical in conjunction with
Hall measurements because of the useful information the low-
magnetic-field limit provides in combination with resistivity
measurements.

It should be noted that the ordinary magnetoresistance does
follow directly from a value of the mobility at very low magnetic
fields. It is well-known that when one type of charge carrier dom-
inates, the fractional change in resistivity, Dq/q, �(lB)2. As before,
l is the electron or hole mobility, whichever dominates. When
both types are present in comparable numbers, a more compli-
cated expression involving both carrier concentrations and mobil-
ities is required, but there is still a quadratic dependence on the
magnetic field [9]. Any magnetoresistive effects that are aniso-
tropic in the plane of the sample or involve layered structures, such
as giant magnetoresistance, lie outside of the discussion in this
paper.

In Fig. 2, attention is focused on the line connecting the voltage
points for either measurement configuration. Given the symmetry
of either configuration, it is intuitive that the field, Eo, caused by
the current Io is perpendicular to that line along its entire length.
This fact also follows from the solution of the electrostatics bound-
ary-vale problem. Given the nature of the Lorentz force, EH is par-

allel to the line, as illustrated. It has been shown that the
relationship between Eo and EH is as follows, to first-order in B,
[10]:

EH ¼
Bðnhl2

h � nel2
e ÞEo

ðnhlh þ neleÞ
� BKEo ð1Þ

The explicit role of all second and higher-order terms in the treat-
ment of the Hall Effect are also displayed in [5]. In Eq. (1), nh (ne)
is the hole (electron) concentration and lh (le) is the hole (electron)
mobility. It reduces to (BEolh) or (�BEole) when, as is usually the
case, holes or electrons completely predominate as charge carriers.
The Hall voltage is line integral of �EH along the dotted line from
one edge of the sample to another (configuration A) or one corner
to another (configuration B). In other words,

VHA ¼
Z a

0
EH

a
2
; y

� �
dy ¼ BK

Z a

0
Eo

a
2
; y

� �
dy ð2Þ

Since the equation of the dotted line in configuration B is x + y = a,

VHB ¼
BKffiffiffi

2
p
� � Z 0

a
Eoðx; a� xÞdxþ

Z a

0
Eoða� y; yÞdy

� �

¼
ffiffiffi
2
p

BK
� �Z a

0
E0ða� y; yÞdy ð3Þ

In these expressions, we have substituted K for the more compli-
cated expression in Eq. (1). IA and IB are the integrals in Eqs. (2)
and (3), respectively. Since we are assuming an Ohmic conductor,

Eo ¼ qJ ð4Þ

where q is the electrical resistivity and J is the current density. Thus,
we are integrating the current density over the entire width of the
sample. This must equal the total current per unit width, Io/c, be-
cause all the current that enters and leaves the pads passes through
any cross section of the sample that separates the pads. This is also
true of a thick sample. Thus,

Fig. 1. Measurement configurations A and B under consideration.

Fig. 2. Detail showing the electric fields along the line connecting the voltage
points.
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