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a b s t r a c t

This paper investigates the problemof theH∞ adaptive observer design for a class of nonlinear dynamical
systems. The main contribution consists in providing a unified synthesis method for systems with both
Lipschitz and monotone nonlinearities (not necessarily Lipschitz). Thanks to the innovation terms into
the nonlinear functions [M. Arcak, P. Kokotovic, Observer-based control of systems with slope-restricted
nonlinearities, IEEE Transactions on Automatic Control 46 (7) (2001) 1146–1150] and to the differential
mean value theorem [A. Zemouche, M. Boutayeb, G.I. Bara, Observers for a class of Lipschitz systems with
extension to H∞ performance analysis, Systems and Control Letters 57 (1) (2008) 18–27], the stability
analysis leads to the solvability of a Linear Matrix Inequality (LMI) with several degrees of freedom. For
simplicity, we start by presenting the result in anH∞ adaptive-free context. Furthermore, we propose an
H∞ adaptive estimator that extends easily the obtained results to systems with unknown parameters in
the presence of disturbances. We show, in particular, that the matching condition in terms of an equality
constraint required in several works is not necessary and therefore allows reducing the conservatism of
the existing conditions. Performances of the proposed approach are shown through a numerical example
with a polynomial nonlinearity.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Due to complex behaviors of tremendous natural and artificial
processes, observer design for nonlinear dynamic systems has
been extensively studied during the last years [1–5]. It remains
one of the challenging and open research problems in the area
of control theory since used in stabilization, diagnosis or systems
supervision. Various approaches have been developed for different
types of nonlinear models. One of them is based on a nonlinear
change of coordinates to bring the system into a pseudo-linear
canonical form easily treated by linear techniques [6–9], however,
it requires solving a set of constraints hard to be met for MIMO
systems with disturbances.
For the latter with Lipschitz nonlinearity, an alternative

approach was proposed first by Thau [10]. Since then, significant
improvements were established where the stability conditions are
expressed in terms of algebraic Riccati equations in connection
with the upper bound of the Lipschitz constant [11,12]. The
same class of systems is investigated in [13] to construct a state
observer, where the convergence of the estimation error has been
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studied by using both Lyapunov functions and functionals, and
stability conditions are expressed using LMIs. However, all these
stability conditions are difficult to be satisfied for large values
of the Lipschitz constant. In a recent work [5], to reduce this
conservatism, we introduced the differential mean value theorem
in order to represent the dynamics of the estimation error as a
Linear Parameter Varying (LPV) system. The observer gain is then
obtained by solving a set of LMIs. This methodology (transforming
error dynamics into LPV systems) can also be obtained using the
contraction theory [14,15]. An alternative and interesting approach
has been recently presented in [16,17]. It consists in representing
the observer error system as the feedback interconnection of a
linear system and time-varying sector nonlinearity. This approach
eliminates the global Lipschitz restriction and avoids high gain.
The stability conditions expressed in terms of LMIs, under an
equality constraint, are non-restrictive and easy to satisfy for
monotone systems. Nevertheless, tomake this approachmuch less
conservative, it is suitable to avoid the equality constraint that
appears in the observer synthesis. This goal was solved in [18] by
the same author.
Over the last decades, the adaptive observer design problem

has become increasingly a subject of research in progress. Several
approaches are established in the literature. For an overview, we
refer the reader to [19–26]. Nevertheless, all these approaches
suffer from some disadvantages, such as the presence of equality
constraint in the synthesis conditions, and the difficulty to study
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the problem for systems with disturbed measurements, which is
frequently encountered in various systems.
Inspired by [5,18], we propose here a unified H∞ adaptive

observer design method for a class of systems with both Lipschitz
and monotone nonlinearities. Thanks to the DMVT, we provide in
this paper a completion of Arcak’s observer design methodology.
The proposed method allows overcoming some difficulties related
to some above adaptive observer design methods. The main
contributions lie into the following points:

• stability conditions are expressed in terms of LMIs that allow
large values of Lipschitz constants but also non-Lipschitz
systems;
• the equality constraint, usually introduced on the gain matrix
by the classical adaptive methods, is not required;
• overcome the difficulty of the presence of disturbances in
the output measurements. Indeed, the classical adaptive ap-
proaches based on equality constraint are unable to give a suit-
able analysis for systemswith disturbed output measurements.
For instance, in [24], the method does not work in the presence
of disturbances in the output measurements. Indeed, this leads
to coupling between the state estimation error, the adaptation
error and the disturbances, which prevent from leading to a LMI
under an equality constraint.

For simplicity andmore clarity,we start by presenting the result
in anH∞ adaptive-free context. Through the paper, we provide an
academic example to show the good performances of the proposed
approach.
The rest of this note is organized as follows. In Section 2, we

introduce the problem formulation and we present the observer
synthesis method in anH∞ adaptive-free context, which consists
in LMIs feasibility condition. The result is illustrated through a
numerical example. An H∞ adaptive extension is then provided
in Section 3 for systems in the presence of unknown constant
parameters.

Notations. The following notations will be used throughout this
paper.

• ‖.‖ is the usual Euclidean norm;
• (?) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0)means that this matrix is
positive definite (negative definite);
• All matrix S can be denoted by S =

(
Sij
)
, where Sij are the

elements of S.
• λmin(S) and λmax(S) are the minimum and maximum eigenval-
ues of the symmetric matrix S;
• Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1} is the convex
combination of x and y;

• es(i) =

0, . . . , 0, i th︷︸︸︷
1 , 0, . . . , 0︸ ︷︷ ︸

s components

T ∈ Rs, s ≥ 1 is a vector of

the canonical basis of Rs;

• the notation ‖x‖Lr2 =
(∫
+∞

0 ‖x(t)‖2dt
) 1
2
is the Lr2 norm of

x(.) : R+ → Rr .

2. Observer synthesis method in H∞ adaptive-free context

For simplicity and clarity, we prefer to start by presenting the
method for systems without unknown parameters in a free noisy
context.

2.1. Problem formulation

Consider the class of nonlinear systems described by the
following equations:

ẋ = Ax+ Bf (x, u) (1a)
y = Cx (1b)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector
and y ∈ Rp is the output vector. A, B and C are constant matrices
of appropriate dimensions. The function f is differentiable with
respect to x and expressed under the following general form:

f (x, u) =
[
f T1 (H1x, u) . . . f Tq (Hqx, u)

]T
(2)

where Hi ∈ Rsi×n for all i ∈ {1, . . . , q} and f satisfies the following
assumption:

Assumption. Assume that the function f (.) satisfies

−∞ < aij ≤
∂ fi
∂vij

(vi, u) ≤ bij ≤ +∞, ∀vi ∈ Rsi . (3)

The inequality (3) implies that the differentiable function f is
γ -Lipschitz where

γ =

√√√√ i=q∑
i=1

j=si∑
j=1

max
(
|aij|2, |bij|2

)
.

Note that the reformulation of the Lipschitz condition for
differentiable functions as in (3) leads to less restrictive synthesis
conditions and avoids high gain as shown in [5].

Remark 1. Without loss of generality we assume that the
nonlinear function f satisfies (3) with aij = 0 for all i = 1, . . . , q
and j = 1, . . . , s, where s = max1≤i≤q(si). Indeed, if there exist
subsets S1 ⊂ {1, . . . , q} and S2 ⊂ {1, . . . , s} such that aij 6= 0 for
all (i, j) ∈ S1 × S2, we can consider a new function

f̃ (x, u) = f (x, u)−

( ∑
(i,j)∈S1×S2

aijHijHi

)
x

where Hij = eq(i)eTsi(j). Then, f̃ satisfies (3) with ãij = 0 and
b̃ij = bij − aij. We rewrite then (1a) as

ẋ = Ãx+ Bf̃ (x, u)

with

Ã = A+ B
∑

(i,j)∈S1×S2

aijHijHi.

The state observer that we consider here is a generalization of
the observer proposed in [18,17]. It is described as follows:

˙̂x = Ax̂+ Bf̄ (x̂, u)+ L(y− Cx̂) (4a)

f̄i(x̂, u) = fi
(
Hix̂+ Ki(y− Cx̂), u

)
(4b)

where f̄i is the ith component of f̄ .
Then, the goal is to find the gains L ∈ Rn×p and Ki ∈ Rsi×p for

i = 1, . . . , q, such that the estimation error

ε = x− x̂ (5)

converges exponentially towards zero.
The dynamics of the estimation error is described by:

ε̇ = (A− LC) ε + B
(
f (x, u)− f̄ (x̂, u)

)
. (6)
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