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a b s t r a c t

Invariance principles and sufficient conditions for asymptotic stability for switching systems are given.
Multiple Lyapunov-like functions are used, and dwell-time, persistent dwell-time, and weak dwell-
time switching signals are considered. The invariance principles are derived from general invariance
principles for hybrid systems. Asymptotic stability is concluded under observability assumptions or
common bounds on the Lyapunov-like functions.
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1. Introduction

1.1. Background

Switching systems are dynamical systems governed by a
differential equation whose right hand side is selected from
a given family of functions, based on some (time or state
dependent) switching rule. These systems are a particular class of
hybrid dynamical systems as they combine continuous dynamics
(differential equations) with discrete dynamics (switching). Over
the last fifteen years, the area of switching systems has been very
active and many efforts have been made to study their stability
properties. These include the early work on sufficient conditions
for asymptotic stability of linear switching systems with multiple
Lyapunov-like functions in [20,19] and of nonlinear switching
systems in [12,2,5,15]. Asymptotic stability under particular
classes of switching signals has been analyzed in [11,15,9,10,1,18].
For much more background, see [16,15,9].
In this paper, we focus on tools for convergence analysis of

solutions to switching systems under certain classes of switching
signals. On this topic, [9] introduced an invariance principle for
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switched linear systems under persistently dwell-time switching
signals. The follow-up work, [10], extended some of the results
of [9] to a family of nonlinear switching systems; [1] presented
invariance principles for nonlinear switching systems with dwell-
time switching signals and state-dependent switching that, as a
difference to [9], allow for locally Lipschitz Lyapunov functions.
The paper [18] stated an invariance principle for nonlinear
switching systems with average dwell-time signals and underlined
the role of ‘‘sequential compactness’’ of particular subsets of
solutions to switching systems in invariance arguments. For
hybrid systems, [17] extended LaSalle’s invariance principle to
nonblocking, deterministic, and continuous hybrid systems, while
in [4], an invariance principle for left-continuous and impulsive
systems without multiple jumps at an instant (and with further
quasi-continuity properties including uniqueness of solutions)
is presented. More recently, in [21], invariance principles were
shown for general hybrid systems in the framework of [8]. (That
framework allows for nonuniqueness of solutions, multiple jumps
at time instants, and Zeno behaviors, while only posing mild
regularity conditions on the data.)

1.2. Contribution

The goal of this paper is to show how some of the results of [21]
can be used to obtain invariance principles for switching systems,
under various types of switching signals. While doing that, we
recover, generalize, and/or strengthen some of the results of [9,10,
1,18]. In particular:
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- Corollary 5.3 strengthens [1, Theorems 1,2] by including both
forward and backward invariance conditions on the set to
which solutions converge. Also, Corollary 4.4, while having the
same invariance conditions as those in [1], also incorporates
level sets of Lyapunov functions into the description of the
invariant set.
- Corollary 4.7 is an invariance principle for nonlinear switching
systems that generalizes [9, Theorem 8] stated for linear
switching systems. Even in the linear setting, Corollary 4.7
yields smaller, in comparison to [9, Theorem 8], sets to which
solutions converge. This is possible thanks to taking into
account the period of persistence of solutions.
- [10, Theorem 7] is derived, in Corollary 4.13, as a consequence
of the hybrid invariance principle in Theorem 4.1.
- First conclusion of [18, Theorem 2.3] follows from Lemma 4.12
and Corollary 4.13.

In deriving the results, we rely on invariance principles
in [21], but only in proving Theorems 4.1 and 5.2. (Then,
several consequences of these two theorems are derived in a
self-contained way.) We also use two techniques that should
prove useful for purposes other than those in this paper. More
specifically:

- Given a solution to a switching system, τD > 0, and a sequence
of time intervals of length at least τD on which the logical mode
takes on a particular value q∗, one can identify the restriction
of the solution to those intervals with a function on [0,∞). The
resulting object is not a solution to a switching system, as the
continuous variable of the original switching system may now
be only piecewise continuous. (Indeed, for the original system
there is no reason for the continuous variable to have the same
value at the end of an interval when the mode is q∗ and at
the beginning of the next interval when the mode is q∗ again.)
However, this resulting object is a solution to an appropriately
formulated hybrid system (truly hybrid system, in which both
the ‘‘continuous’’ variable and the logicalmodemay jump). That
hybrid system can be given sufficient regularity properties, like
those called for by [8]. Then, invariance principles of [21] can
be applied to it, with implications for the original switching
system. See the proofs of Corollaries 4.4 and 4.7 for illustrations
of this technique.
- In the case of multiple Lyapunov functions, i.e., when in logical
mode q, a function Vq is decreasing at a rate Wq, it is often
assumed that the value of Vq∗ at the end of an interval with
mode q∗ is greater or equal than the value ofVq∗ at the beginning
of the next interval with mode q∗. It follows that the function
(x, q) 7→ Vq(x) cannot be used in the standard Lyapunov
sense, as it is not necessarily decreasing along solutions — it
can increase during switches between different logical modes.
However, it can be shown that for each bounded solution (x, q)
to the switching system, the function (x, q) 7→ Wq(x) is
integrable. (A similar technique was used, for example, in [10,
Theorem 7].) This paves way to the application of invariance
principles of [21] that rely on an output function that decreases
sufficiently fast to 0. See the proof of Theorem 5.2 for an
illustration.

In presenting the results, we clearly separate the statements
only about invariance of sets to which bounded solutions of
switched systems converge (Corollaries 4.4, 4.7 and 5.3) from
stronger statements about asymptotic stability that rely on
additional information like observability or common bounds on
Lyapunov functions (Corollaries 4.10 and 4.13).
Some results of this paper were previously announced in [7].

2. Preliminaries

2.1. Switching systems

Let O ⊂ Rn be an open set, let Q := {1, 2, . . . , qmax}, and for
each q ∈ Q , let fq : O→ Rn be a continuous function. We consider
switching systems given by

SW : ẋ = fq(x). (1)

For more background on switching systems, see e.g. [15,9].
A complete solution to the switching system SW consists of a

locally absolutely continuous function x : [0,∞) → O and a
function q : [0,∞) → Q that is piecewise constant and has a
finite number of discontinuities in each compact time interval, and
ẋ(t) = fq(t)(x(t)) for almost all t ∈ [0,∞). We will say that a
complete solution (x, q) to SW is precompact if x is bounded with
respect to O, that is, there exists a compact set K ⊂ O such that
x(t) ∈ K for all t ∈ [0,∞).
In this paper, we will consider only complete solutions to SW

that are generated under particular classes of switching signals. Let
(x, q) be a complete solution to SW and let t0 = 0, and t1, t2, . . .
be the consecutive (positive) times at which q is discontinuous
(informally, ti is the time of the i-th switch). The solution (x, q) is
a dwell-time solution with dwell time τD > 0 if ti+1 − ti ≥ τD for
i = 0, 1, . . .. (That is, jumps are separated by at least τD amount
of time.) The solution (x, q) is a persistent dwell-time solution with
persistent dwell time τD > 0 and period of persistence T > 0 if
there exists a subsequence 0 = ti0 , ti1 , ti2 , . . . of the sequence {ti}
such that tik+1 − tik ≥ τD for k = 1, 2, . . . and tik+1 − tik+1 ≤
T for k = 0, 1, . . .. (That is, at most T amount of time passes
between two consecutive intervals of length at least τD on which
there are no jumps.) Finally, a solution (x, q) is a weak dwell-time
solution with dwell time τD > 0 if there exists a subsequence
0 = ti0 , ti1 , ti2 , . . . of the sequence {ti} such that tik+1 − tik ≥ τD
for k = 1, 2, . . .. (That is, there are infinitely many intervals of
length τD with no switching.) These classes of solutions follow the
definitions in [9], see also [11]. More precisely, in [9], dwell-time
solutions to SW are elements of the set Sdwell, persistent dwell-
time solutions to SW are elements of the set Sp-dwell, and weak
dwell-time solutions to SW are elements of Sweak-dwell.

2.2. Hybrid systems

We consider hybrid systems of the form

H :

{
ẋ ∈ F(x) x ∈ C
x+ ∈ G(x) x ∈ D (2)

with an associated state space O ⊂ Rm. Above, F (respectively, G)
is the possibly set-valued map describing the flow, (respectively,
the jumps) while C (respectively, D) is the set on which the flow
can occur (respectively, fromwhich the jumps can occur). Formore
background on hybrid systems in this framework, see [6] or [8].
A subset E ⊂ R≥0 × N is a compact hybrid time domain if

E =
⋃J−1
j=0

(
[tj, tj+1], j

)
for some finite sequence of times 0 =

t0 ≤ t1 ≤ t2 · · · ≤ tJ . It is a hybrid time domain if for all
(T , J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid time
domain. Equivalently, E is a hybrid time domain if E is a union of
a finite or infinite sequence of intervals [tj, tj+1] × {j}, with the
‘‘last’’ interval possibly of the form [tj, T ) with T finite or T = ∞.
A hybrid arc is a function whose domain is a hybrid time domain
(for a hybrid arc x, its domain will be denoted dom x) and such
that for each j ∈ N, t → x(t, j) is locally absolutely continuous on
dom x ∩ ([0,∞)× {j}).
A hybrid arc x is a solution to the hybrid system H if x(0, 0) ∈

C ∪ D, x(t, j) ∈ O for all (t, j) ∈ dom x, and
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