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Solution of the input-constrained LQR problem using dynamic programming
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Abstract

The input-constrained LQR problem is addressed in this paper; i.e., the problem of finding the optimal control law for a linear system such
that a quadratic cost functional is minimised over a horizon of length N subject to the satisfaction of input constraints. A global solution (i.e.,
valid in the entire state space) for this problem, and for arbitrary horizon N, is derived analytically by using dynamic programming. The scalar
input case is considered in this paper. Solutions to this problem (and to more general problems: state constraints, multiple inputs) have been
reported recently in the literature, for example, approaches that use the geometric structure of the underlying quadratic programming problem
and approaches that use multi-parametric quadratic programming techniques. The solution by dynamic programming proposed in the present
paper coincides with the ones obtained by the aforementioned approaches. However, being derived using a different approach that exploits the
dynamic nature of the constrained optimisation problem to obtain an analytical solution, the present result complements the previous methods
and reveals additional insights into the intrinsic structure of the optimal solution.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The solution of constrained LQR problems has attracted con-
siderable attention recently. This interest is, mainly, due to the
fact that these problems constitute the core underlying optimi-
sation problem that is solved, at each sampling time, by model
predictive control algorithms (one of the most popular control
methodologies used in industry at present). Of particular inter-
est has been the derivation of explicit solutions that, through
a characterisation of the optimal solution that is computed off-
line, would render on-line optimisation unnecessary.

Recently, two approaches have simultaneously been devel-
oped, aiming at obtaining such off-line explicit solutions. These
two approaches have been reported in, for example, [2,11]. The
first method provides an algorithm, based on multi-parametric
quadratic programming techniques, to obtain an explicit solu-
tion to the problem. The second method mentioned above uses
geometric arguments to obtain a characterisation of the optimal
solution of the resulting quadratic programme. Subsequently,
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many interesting extensions have been reported. For example,
in [9] an explicit solution to a Min–Max MPC problem with
bounded uncertainties is obtained; a suboptimal formulation
that reduces the complexity of the solution is proposed in [7]; in
[6] the infinite-time solution is computed by combining multi-
parametric quadratic programming with reachability analysis.
In fact, there exists a growing number of publications on
this topic that reflects the interest that these problems have
generated.

Starting from a different perspective to the ones mentioned
above, a solution to the input-constrained case has been re-
ported in [4]. This solution, obtained by using dynamic pro-
gramming arguments, was of a local nature; i.e., valid in a
region of the state space, and consisted in simply clipping the
optimal unconstrained solution; i.e., u = −sat�(Kx), where
sat�(·) is the saturation function with bounds ±�. (Related
work that utilises a different approach based on KKT opti-
mality conditions has also been published in [8]). In [3], the
region where this solution is valid was further characterised
by a set of linear inequalities and it was shown that, inside
this region, the controller u = −sat�(Kx) effectively reaches
the constraints, thus providing a nontrivial characterisation of
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the optimal solution. These results were used in [5] to obtain
improved terminal constraint sets that guarantee closed-loop
stability of model predictive control schemes.

In the present paper, the solution by dynamic programming is
further extended to provide the global solution (i.e., valid in the
entire state space) to the problem for arbitrary horizon N. The
global solution is, of course, not just u = −sat�(Kx) and can
be concisely summarised by the expression u=−sat�(L̂N,ix+
ĥN,i) for x ∈ Xi , where the set Xi ⊂ Rn represents a region
of a state-space partition Rn = ⋃

jXj . The solution presented
in this paper exploits the dynamic nature of the optimisation
problem to obtain an analytical characterisation of the optimal
control law. Although the final result (when evaluated at any
given particular problem) obviously coincides, by optimality,
with those obtained by other methods, the main contribution of
the solution obtained by dynamic programming lies in that all
the derivations required are analytical and, hence, the solution
is given by closed-form expressions (i.e., all the expressions
are closed-form functions of the data of the problem). One of
the motivations of this approach is that it provides an alter-
native methodology, based on analytical derivations, to obtain
the solution. It is envisaged that this alternative methodology
could be amenable to being extended to related open prob-
lems, such as constrained control of non-linear systems, closed-
form solution of the constrained continuous-time LQR problem,
etc.

The remainder of the paper is organised as follows. In
Section 2, the input-constrained LQR problem is formulated.
In Section 3 the solution is provided, which comprises the
control law structure and the regions of the state space where
each component of the control law is valid. The derivation of
the solution is done by dynamic programming and is included
in the Appendix at the end of the paper. The solution is illus-
trated with an example in Section 4. Finally, Section 5 presents
the conclusions.

2. Problem formulation

Consider the discrete-time linear state-space model

xk+1 = Axk + Buk , (1)

where xk ∈ Rn and uk ∈ R are the state and control in-
put, respectively. In (1) the pair (A, B) is assumed to be
stabilisable, and the control input is required to satisfy the
constraint

uk ∈ �,

where ��[−�, �], � > 0. The following notation will be em-
ployed. The control sequence, for some horizon N, is denoted
by

u�u0�{u0, u1, . . . , uN−1}.
For r ∈ {1, . . . , N}, and for some initial time N − r ∈
{0, 1, . . . , N −1}, let uN−r denote the partial control sequence:

uN−r�{uN−r , uN−(r−1), . . . , uN−1}.

By u ∈ �N (uN−r ∈ �r ) we denote the case in which each
element in the sequence satisfies uk ∈ �, k = 0, . . . , N − 1
(k = N − r, . . . , N − 1).

The solution of (1) at time k�N − r when the initial state
at time N − r is xN−r = x, and the control sequence is uN−r ,
is denoted by x

uN−r

k (x, N − r). To simplify notation, the ini-
tial time is dropped when it is zero; i.e., xu

k (x)�x
u0
k (x, 0).

The fixed-horizon optimal control problem considered
is

PN(x) : V o
N(x) = min

u
VN(x, u)

subject to u ∈ �N . (2)

The cost VN(·, ·) in (2) is defined by

VN(x, u) =
N−1∑
k=0

(xT
k Qxk + uT

k Ruk) + xT
NPxN , (3)

with xk = xu
k (x), and where Q is the state weighting ma-

trix, assumed to be positive semidefinite, R is the control
weighting matrix, assumed to be positive definite, and P
is the terminal state weighting matrix which is chosen as
the positive definite matrix solution of the algebraic Riccati
equation

P = ATPA + Q − KTR̄K , (4)

where

K�R̄−1BTPA, R̄�R + BTPB. (5)

It is well known (see, for example, [10]) that with this choice
of terminal weight P, and provided that the horizon N is large
enough, the resulting receding horizon implementation of the
control law gives an asymptotically stable closed loop system
and possesses all the properties of infinite-horizon optimal con-
trol. By the receding horizon implementation it is understood
the standard technique (also known as model predictive con-
trol) in which the first control action u0 in the optimal control
sequence u that minimises (2)–(3) is applied to system (1) and,
as the state evolves to a new value in the next sampling time,
the optimisation process is repeated over a horizon of length N
(receding horizon).

3. Solution of PN(x) by dynamic programming

For each r ∈ {1, . . . , N}, the partial value function (or opti-
mal cost to go) is defined by

V o
r (x) = min

uN−r

Vr (x, uN−r ) (6)

subject to the constraint uN−r ∈ �r , where the partial cost
Vr(·, ·) is defined by

Vr(x, uN−r ) =
N−1∑

k=N−r

(xT
k Qxk + uT

k Ruk) + xT
NPxN (7)
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