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A power-based description of standard mechanical systems
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Abstract

This paper is concerned with the construction of a power-based modeling framework for mechanical systems. Mathematically, this is
formalized by proving that every standard mechanical system (with or without dissipation) can be written as a gradient vector field with respect
to an indefinite metric. The form and existence of the corresponding potential function is shown to be the mechanical analog of Brayton
and Moser’s mixed-potential function as originally derived for nonlinear electrical networks in the early sixties. In this way, several recently
proposed analysis and control methods that use the mixed-potential function as a starting point can also be applied to mechanical systems.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Mechanical systems; Hamiltonian mechanics; Brayton–Moser equations

1. Introduction and motivation

It is well known that a large class of physical systems
(e.g., mechanical, electrical, electromechanical, thermodynam-
ical, etc.) admits, at least partially, a representation by the
Euler–Lagrange (EL) or Hamiltonian equations of motion, see
e.g. [1,7,9,13,14], and the references therein. A key aspect for
both sets of equations is that the energy storage in the system
plays a central role. For standard mechanical systems with n
degrees of freedom, and locally represented by n generalized
displacement coordinates q = col(q1, . . . , qn) ∈ Q, the EL
equations of motion are given by1

d

dt

(∇q̇L(q, q̇)
)− ∇qL(q, q̇) = �, (1)

where q̇ = col(q̇1, . . . , q̇n) ∈ V denotes the generalized veloc-
ities, and L : Q × V → R represents the Lagrangian which
is defined by the difference between the kinetic co-energy and
the potential energy. Usually the forces � are decomposed into
dissipative forces and generalized external forces.

The relation between the EL equations and the Hamiltonian
equations is classically established as follows. Defining the gene-
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1 By ∇x we denote the partial derivative operator �/�x.
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ralized momenta p = ∇q̇L(q, q̇) with p=col(p1, . . ., pn) ∈ P,
the equations of motion, as described by the set of second-
order equations (1), can be written as a set of 2n first-order
equations:

q̇ = ∇pH(q, p), ṗ = −∇qH(q, p) + �. (2)

Here, H : Q × P → R denotes the Hamiltonian which repre-
sents the sum of the kinetic and potential energy.

The relationship between (1) and (2) is graphically repre-
sented in the diagram shown in Fig. 1 (solid lines). Clearly,
the diagram suggests that there exists a dual form of (1) in the
sense that a mechanical system can be expressed in terms of
a set of generalized momenta and its time derivatives, which
represent a set of generalized forces. Indeed, in [7] a descrip-
tion of the dynamics in the generalized momentum and force
spaces P and F, respectively, is called a co-Lagrangian system,
where the Lagrangian L in (1) is replaced by its dual form
L∗ : P × F → R, representing the difference between the
potential co-energy and the kinetic energy, while the forces �
are replaced by external velocities �∗, i.e.,

d

dt
(∇ṗL

∗(p, ṗ)) − ∇pL
∗(p, ṗ) = �∗, (3)

with ṗ = col(ṗ1, . . . , ṗn) ∈ F. Hence, the co-Lagrangian sys-
tem (3) represents a velocity-balance equation.
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Fig. 1. Mechanical configuration space quadrangle: the symbols Q, P, V and
F denote the spaces of the generalized displacements, momenta, velocities and
forces. The solid and dashed diagonal lines represent the directions for the
Legendre transformations of the Lagrangian and co-Lagrangian, respectively,
in relation to the Hamiltonian; the question marks denote the fourth equation
set to be explored in this paper. Notice that the relation between the spaces
Q and V, and similarly between P and F, is the d/dt operator.

So far we have considered three possible representations de-
scribing the dynamics of a standard mechanical system. The
underlying relationship between the three sets of equations is
the existence of the Legendre transformations between Q, V,
P and F. Furthermore, the quadrangle of Fig. 1 also suggests
a fourth equation set. Intuitively, at this point, one could be
tempted to call a dynamic description on the spaces V and
F the co-Hamiltonian equations of motion. Starting from the
Hamiltonian equation set, if both the Legendre transformations
of Q → F and P → V are considered simultaneously, one
obtains H∗ : F × V → R which appears to be a bona-fide
co-Hamiltonian candidate. Hence, based on the latter obser-
vation, and in comparison to (2), this would suggest that the
‘co-Hamiltonian’ equation set should read

v̇ = ∇fH
∗(v, f ), ḟ = −∇vH

∗(v, f ) + �,

where v = q̇, and f = ṗ. However, the latter set of equations
is not correctly describing the dynamics. Furthermore, it is not
clear how the external signals, represented by �, relate to the
original external signals � and/or �∗. Thus, the existence, form
and meaning of the fourth description remains to be clarified.

In this paper, it is our objective to identify the fourth equa-
tion set (indicated by the question marks) in the quadrangle of
Fig. 1, and to formally complete the relationships between
the different sets of equations. It will be shown that the
fourth equation set constitutes a mechanical analog of the
Brayton–Moser (BM) equations [2]. These equations represent
a gradient system with respect to an indefinite metric defined
by the dynamic part of the network (capacitors and inductors),
and a mixed-potential function which describes the static part
(interconnection, resistors and sources) of the network and has
the units of power. Besides the completion of the quadrangle,
the mechanical analog of the BM equations can be useful for
other features like:

• Stability analysis along the lines of [2]. The mixed-potential
(and thus the power in the system) can be used to con-

struct Lyapunov-type functions to prove stability under cer-
tain conditions—even in cases that the system contains (re-
gions of) negative resistance! Additionally, the stability cri-
teria stemming from this method can be used to find lower
bounds on the control parameters when applying passivity-
based control (PBC),2 see e.g., [5] for some recent results
in the field of electronic power converter control.

• Definition of new passivity properties along the lines of [3].
This includes the definition of alternative conjugated port-
variables (inputs and outputs) with respect to an alternative
storage function (i.e., the mixed-potential).

• The notion of the aforementioned new passivity properties
have led to the paradigm of power-shaping stabilization.
Some recent applications to nonlinear RLC circuits have
been reported in [8]. The power-shaping method is based on
a particular selection of the input signals (the controls) as to
shape the power flow (read: the mixed-potential).

• The BM equations seem to be a natural equation set in rela-
tion with bond-graph theory since the state variables live in
the flow and effort spaces.

There exists a widely accepted standard analogy between
simple mechanical and electrical system elements, like the
‘spring–capacitor’ and the ‘mass–inductor’ analogy used in this
paper, but also the ‘spring-inductor’ and ‘mass-capacitor’ anal-
ogy used in e.g. [11]. However, the existence of a well-defined
analogy for more general mechanical systems is not straight-
forward. One of the main reasons for making such analogy
difficult is the presence of the coriolis and centrifugal forces,
which do not appear as such in the electrical domain. Another
difficulty is that, in contrast to electrical networks, mechanical
systems are in general not nodical. Hence, a mechanical system
cannot always be considered as an interconnected graph. For
these reasons, we can, in general, not equate the dynamics of a
mechanical system mutatis mutandis along the lines of [2]. A
more dedicated analysis is needed and a dedicated transforma-
tion algorithm that goes beyond the Legendre transformation
needs to be developed.

Although there have been earlier attempts towards the for-
malization of a mechanical analog of [2], see e.g., [4,6], in our
opinion, the mechanical analog of [2] presented in this paper
seems a rather natural and general one. The approach of our
paper differs from [10] in the sense that here we consider a de-
scription starting from the Hamiltonian system equations, and
possibly staying within the original generalized position and
generalized momenta coordinates. In [10] the starting point is
given by the EL equations and an electrical interpretation in
canonical BM coordinates of e.g., the gravity force as well as
the coriolis and centrifugal terms is given. Also, the final BM
form is different.

The structure of the paper is as follows. Section 2 discusses
the original form of the BM equations. In Section 3, a lemma

2 PBC is a control method that has its roots in the field of robotics and
the closely related Lagrangian framework. For a detailed elaboration on this
subject the interested reader is referred to [9], and the references cited therein.
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