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Abstract

The difficulty in identification of a Hammerstein (a linear dynamical block following a memoryless nonlinear block) nonlinear output-error
model is that the information vector in the identification model contains unknown variables—the noise-free (true) outputs of the system. In
this paper, an auxiliary model-based least-squares identification algorithm is developed. The basic idea is to replace the unknown variables by
the output of an auxiliary model. Convergence analysis of the algorithm indicates that the parameter estimation error consistently converges to
zero under a generalized persistent excitation condition. The simulation results show the effectiveness of the proposed algorithms.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Two typical classes of nonlinear systems—linear time-
invariant blocks following (or followed by) static nonlinear
blocks—are Hammerstein and Wiener (H–W) nonlinear sys-
tems, which are common in industry, e.g., the valve saturation
nonlinearities, dead-zone nonlinearities and linear systems
equipped with nonlinear sensors [35]. In general, existing
identification approaches for H–W models can be roughly
divided into two categories: the iterative and the recursive
algorithms. In order to distinguish on-line from off-line calcu-
lation, we use iterative for off-line algorithms, and recursive
for on-line ones. We imply that a recursive algorithm can
be on-line implemented, but an iterative one cannot. For a
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recursive algorithm, new information (input and/or output data)
is always used in the algorithm which recursively computes the
parameter estimates every step as time increases.

Some iterative and/or off-line algorithms of H–W mod-
els were discussed in [2,1,4,6,7,22,23,25,28,30,36,11,20] and
other recursive and/or on-line algorithms were studied in, e.g.,
[35,11,20,32,33,3,5,34]. In the identification area of nonlinear
systems, Bai reported a two-stage identification algorithm for
Hammerstein–Wiener nonlinear systems based on singular
value decomposition (SVD) and least squares [1] and studied
identification problem of systems with hard input nonlineari-
ties of known structure [2]; Vörös presented a half-substitution
algorithm to identify Hammerstein systems with two-segment
nonlinearities and with multisegment piecewise-linear charac-
teristics, but no convergence analysis was carried out [32,33];
Cerone and Regruto analyzed parameter error bounds in the
Hammerstein models by using the output measurement error
bound [6]. Also, Pawlak used the series expansion approach
to study the identification of Hammerstein nonlinear output-
error (state-space) models [29]. Recently, an iterative least-
squares and a recursive least-squares identification methods
were reported in [11], and an iterative gradient and a recursive
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Fig. 1. The Hammerstein nonlinear output-error system.

stochastic gradient algorithms were developed in [20] for
nonlinear ARMAX models based only on the available
input–output data, and the convergence properties of the recur-
sive algorithms involved were proved.

However, most of the identification approaches in the liter-
ature assume that the systems under consideration are nonlin-
ear ARX models, or equation-error-like models [35,2,1,7,3].
That is, each element of the information vector consisting of
input–output data is measured. In this paper, we focus on the
identification problem of a class of Hammerstein output-error-
type nonlinear systems and present an auxiliary-model least-
squares (AMLS) algorithm, which is different from the ones
mentioned above in that the information vector in our identifi-
cation model contains unknown variables (namely, unavailable
noise-free outputs), and we adopt an auxiliary model or refer-
ence model to estimate these unknown variables and further use
the outputs of the auxiliary model instead of the unknown noise-
free outputs to identify the system parameters. The basic idea
is to extend the Landau’s output-error method to study identifi-
cation problem of nonlinear systems [21,31]. To the best of our
knowledge, few publications addressed identification methods
of Hammerstein nonlinear output-error systems, especially the
convergence problem of the algorithms involved, which are the
focus of this work.

The objective of this paper is, by means of the auxiliary
model identification principle, to derive an algorithm to esti-
mate the system parameters of the nonlinear output-error mod-
els based on the available input–output data {u(t), y(t)}, and
to study the properties of the algorithm involved.

Briefly, the paper is organized as follows. Section 2 describes
the identification algorithms related to the Hammerstein sys-
tems. Section 3 analyzes the properties of the proposed stochas-
tic algorithm. Section 4 provides an illustrative example to show
the effectiveness of the algorithm proposed. Finally, we offer
some concluding remarks in Section 5.

2. The algorithm description

Consider the Hammerstein output-error system shown in
Fig. 1 that consists of a nonlinear memoryless element fol-
lowed by a linear output-error model [6,29], where the true
output (namely, the noise-free output) x(t) and the inner
variable ū(t) (namely, the output of the nonlinear block) are
unmeasurable, u(t) is the system input, y(t) is the measure-
ment of x(t), v(t) is an additive noise with zero mean. The
nonlinear part in the Hammerstein model is a polynomial
of a known order in the input [7,22,28], or, more gener-
ally, a nonlinear function of a known basis (�1, �2, . . . , �m)

as follows [6,11,20]:

ū(t) = f (u(t)) = c1�1(u(t)) + c2�2(u(t))

+ · · · + cm�m(u(t)) =
m∑

j=1

cj �j (u(t)). (1)

Then the Hammerstein nonlinear output-error model in Fig. 1
may be expressed as

x(t) = B(z)

A(z)
ū(t) = B(z)

A(z)
[c1�1(u(t)) + c2�2(u(t))

+ · · · + cm�m(u(t))],
y(t) = x(t) + v(t).

Here, A(z) and B(z) are polynomials in the shift operator z−1

[z−1y(t) = y(t − 1)] with

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + anz
−n,

B(z) = b1z
−1 + b2z

−2 + b3z
−3 + · · · + bnz

−n.

Notice that for the Hammerstein model shown in Fig. 1, f (u)

and G(z) := B(z)/A(z) are actually not unique. Any pair
(�f (u), G(z)/�) for some nonzero and finite constant � would
produce identical input and output measurements. In other
words, any identification scheme cannot distinguish between
(f (u), G(z)) and (�f (u), G(z)/�). Therefore, to get a unique
parameterization, without loss of generality, one of the gains
of f (u) and G(z) has to be fixed. There are several ways to
normalize the gains [1,6,22]. Here, we adopt the assumption
[22,3]: the first coefficient of the function f (·) equals 1; i.e.,
c1 = 1 [11,20].

Eq. (2) can be rewritten as a recursive form

x(t) = −
n∑

i=1

aix(t − i) +
n∑

i=1

biū(t − i)

= −
n∑

i=1

aix(t − i) +
n∑

i=1

bi

m∑
j=1

cj �j (u(t − i)).

Define the parameter vector � and information vector �0(t) as

� =

⎡
⎢⎢⎢⎢⎣

a
c1b
c2b
...

cmb

⎤
⎥⎥⎥⎥⎦ ∈ Rn0 ,

�0(t) =

⎡
⎢⎢⎢⎢⎣

−x(t − 1)

−x(t − 2)
...

−x(t − n)

�(t)

⎤
⎥⎥⎥⎥⎦ ∈ Rn0 , n0 := (m + 1)n, (2)

a = [a1, a2, . . . , an]T ∈ Rn, b = [b1, b2, . . . , bn]T ∈ Rn,

c = [c2, c3, . . . , cm]T ∈ Rm−1,

�(t) = [�T
1 (t), �T

2 (t), . . . , �T
m(t)]T ∈ Rmn, (3)
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