
Systems & Control Letters 56 (2007) 656–661
www.elsevier.com/locate/sysconle

An algorithm for calculating indistinguishable states and clusters in
finite-state automata with partially observable transitions�

Weilin Wanga, Stéphane Lafortunea,∗, Feng Linb

aDepartment of EECS, University of Michigan-Ann Arbor, USA
bDepartment of ECE, Wayne State University, USA

Received 7 August 2006; accepted 17 March 2007
Available online 22 May 2007

Abstract

This paper presents a new algorithm for efficiently calculating pairs of indistinguishable states in finite-state automata with partially observable
transitions. The need to obtain pairs of indistinguishable states occurs in several classes of problems related to control under partial observation,
diagnosis, or distributed control with communication for discrete event systems. The algorithm obtains all indistinguishable state pairs in
polynomial time in the number of states and events in the system. Another feature of the algorithm is the grouping of states into clusters and
the identification of indistinguishable cluster pairs. Clusters can be employed to solve control problems for partially observed systems.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Discrete event systems; Automata; Observability; State clusters; Supervisory control

1. Introduction

Consider a discrete event system modeled by a deterministic
finite-state automaton G where some of the transitions of G are
not observable. A pair of states (x1, x2) of G is said to be indis-
tinguishable if G can generate two traces of events, s1 and s2,
where si takes the system to xi , i=1, 2, and such that s1 and s2
have the same observable projection. The need to identify all
state pairs that are indistinguishable occurs in several classes
of problems for partially observed discrete-event systems, most
importantly in control [4], diagnosis [6], and communication
[5]. Indistinguishable state pairs can be identified by examin-
ing the states of the observer of G, which is the deterministic
automaton that is obtained after replacing every unobservable
transition in G by the empty trace symbol and determinizing the
result (see, e.g., [1]). However, the construction of the observer
is worst-case exponential in the state space of G. To avoid this

� The research of the first two authors is supported in part by ONR Grant
N0001-14-03-1-0232 and by NSF Grant CCR-0325571. The research of the
third author is supported in part by NSF Grant INT-0213651.
∗ Corresponding author.

E-mail address: stephane@eecs.umich.edu (S. Lafortune).

0167-6911/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2007.03.006

step, researchers have developed specific tests of polynomial
complexity in the state space of G for several important proper-
ties thatarise in partially observed discrete-event system theory,
such as observability [8] and diagnosability [10].

The contribution of this paper is to present a new algorithm
that calculates indistinguishable state pairs and indistinguish-
able “cluster pairs” in polynomial complexity in the number of
states and events in the system G. Clusters are sets of states
characterized by their reachability with unobservable transi-
tions from a given state, referred to as the cluster head. (A pre-
cise definition is given in the next section.) Once the pairs of
indistinguishable states (clusters) have been identified, it is gen-
erally straightforward to test several important discrete-event
system-theoretic properties such as observability [3], diagnos-
ability [6], detectability [7], and feasibility (of communication
policies) [5,9]. In fact, the algorithm herein was originally de-
veloped to test feasibility in the context of solving minimum
communication problems in [9]. The realization that it is appli-
cable in a variety of problems for partially observed discrete-
event systems has motivated its separate presentation in this
paper. Moreover, the notion of clusters, which is at the core of
the algorithm, is of independent interest and can be used for
solving control problems under partial observation, as is briefly
sketched in Section 5 of this paper.

http://www.elsevier.com/locate/sysconle
mailto:stephane@eecs.umich.edu

W. Wang et al. / Systems & Control Letters 56 (2007) 656–661 657

The next section presents the necessary notions and defines
clusters. Section 3 is concerned with the relations that capture
indistinguishable cluster pairs (relation T) and state pairs (re-
lation T). The algorithm is presented in Section 4 and examples
of its application for (i) testing observability and (ii) feedback
control based on clusters, are given in Section 5. A brief con-
clusion follows in Section 6.

2. Automata with partially-observed transitions

We model the discrete event system as a deterministic finite-
state automaton

G= (X, E, f, �, x0), (1)

where X is the finite set of states, E is the finite set of events, f :
X×E→ X is the partial transition function where f (x, e)=y

means that there is a transition labeled by event e from state x
to state y, � : X → E is the active event function and �(x)

denotes the set of events e for which f (x, e) is defined, and x0
is initial state. We will often make a slight abuse of notation
and write (x′, e, x) ∈ f whenever f (x′, e)= x. We use L(G)

to denote the language generated by G. For all s ∈L(G) and
e ∈ E, the transition function f for trace se ∈L(G) is defined
recursively as f (x0, se)= f (f (x0, s), e) whenever f (x0, s) is
defined. We assume that G is accessible, i.e., ∀x ∈ X, ∃s ∈
L(G), f (x0, s)= x.

To specify which transitions are observable to a controller or
agent, we denote the set of transitions TR(G) of G as follows:

TR(G) := {(x, e) ∈ X × E : e ∈ �(x)}. (2)

Some of these transitions are observable and some are not. This
is specified by an index function

I : TR(G)→ {0, 1}, (3)

where I(x, e)=1 means that the transition (x, e) is observable
and I(x, e)= 0 means that it is not. In classical discrete event
control problems, the event set is partitioned as E=Eo ∪Euo,
where Eo is the set of observable events and Euo is the set of
unobservable events. This is a specific case of our definition
for observation on transitions, which corresponds to

I(x, e) :=
{

1 if e ∈ Eo,

0 if e ∈ Euo.

To reflect the fact that some transitions in G are not observable,
we define the information mapping (or projection) � :L(G)→
E∗ as follows:

�(�) := �, where � denotes the empty trace;

�(se) :=
{

�(s)e if I(f (x0, s), e)= 1,

�(s) if I(f (x0, s), e)= 0.

Therefore, if a trace s occurs in G, the controller or agent
will see �(s). For any sublanguage L ⊆ L(G), we define its
�− Projection as

�(L) := {�(s) : s ∈ L}.

In particular, �(L(G)) describes the set of all possible observed
traces for system G.

To construct an automaton for �(L(G)), we first replace all
unobservable transitions by � and then convert the resulting
nondeterministic automaton with � transitions into a determin-
istic automaton using standard methods (see, e.g., [1]). We will
call this automaton the “observer” and denote it by Gobs. To
formally define Gobs, we first define the “unobservable reach”
of a set of states X′ ⊆ X, denoted by UR(X′), as the set of
states in X that are reachable from X′ via some unobservable
transitions. Gobs is then given as

Gobs = (Q, E, h, q0) := Ac(2X, E, h, q0),

where Ac denotes the accessible part of an automaton; q0 :=
UR({x0}); and h(q, e) := UR({x ∈ X : (∃x′ ∈ q)f (x′, e) =
x ∧I(x′, e)= 1}). We emphasize that Q is the set of all acces-
sible states, each of which is a subset of X. It is not difficult to
show that L(Gobs)= �(L(G)).

Based on Gobs, we can define the relation � ⊆ X × X on
the set of states of X as follows. For any xi, xj ∈ X,

(xi, xj) ∈ � ⇔ (∃q ∈ Q)xi ∈ q ∧ xj ∈ q.

Relation � has the following properties.

(1) For all xi ∈ X, (xi, xi) ∈ �.
(2) For all xi, xj ∈ X, (xi, xj) ∈ �⇒ (xj , xi) ∈ �.
(3) In general, (xi, xj) ∈ � ∧ (xj , xk) ∈ ��(xi, xk) ∈ �.
(4) �(si)= �(sj)⇒ (f (x0, si), f (x0, sj)) ∈ �.

To calculate relation � from its definition, we need to construct
Gobs, which in the worst-case is of exponential complexity in
terms of |X|, the number of states in X. One of the contribu-
tions of this paper is to present a new algorithm of polynomial
complexity in |X| for the calculation of �.

2.1. The notion of state clusters

Definition. For x ∈ X, the “cluster” of x is defined as

c(x) :=
{

UR({x}) if ((∃x′ ∈ X)(∃e ∈ E)f (x′, e)
=x ∧I(x′, e)= 1) ∨ x = x0;

undefined otherwise.

Thus, c(x) is defined when state x is entered by an observable
transition or it is the initial state. When it is defined, c(x) is the
“unobservable reach” from state x.

Denote the set of all possible clusters as

� := {c(x) : x ∈ X ∧ c(x)is defined}.
Clearly, the number of clusters is less than |X|. We enumerate
the set of clusters as

� := {�0, �1, �2, . . . ,�N },
where we set �0 = UR(x0).

Next, we define a function R : 2X × E → 2X as follows.
For X′ ⊆ X, e ∈ E,

R(X′, e) := {x ∈ X : (∃ x′ ∈ X′)f (x′, e)= x ∧I(x′, e)= 1}.

Download	English	Version:

https://daneshyari.com/en/article/753039

Download	Persian	Version:

https://daneshyari.com/article/753039

Daneshyari.com

https://daneshyari.com/en/article/753039
https://daneshyari.com/article/753039
https://daneshyari.com/

