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Abstract

This paper considers the problem of structural stability of 2-D singular systems. Firstly, some properties of structural stability of 2-D general
singular systems are presented. Sufficient and necessary conditions for the structural stability of the 2-D singular systems are given. Then, by
extending the Lyapunov approach for the structural stability of 1-D continuous singular systems to the discrete case, a generalized Lyapunov
equation approach to the analysis of the structural stability of 2-D singular Roesser models (2-D SRM) is proposed. The existence of a solution
to the generalized Lyapunov equation gives a sufficient condition for the structural stability of the 2-D SRM.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since Kaczorek [7] introduced the general model of 2-D dis-
crete singular systems, 2-D singular systems have attracted con-
siderable attention in the past decades due to their applications
in non-casual signal and image processing and flow systems
[2,3].

The problem of the structural stability of singular systems
is of both practical and theoretical importance since in most
cases system models are usually perturbed and hence the coef-
ficients of the systems are by no means fixed. The problem of
the structural stability of 1-D singular systems with perturba-
tions in coefficient matrices is discussed in [5]. Since the Lya-
punov equation is effective in the stability analysis of control
systems (see [9,10,16,17,19] and the references therein), some
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generalized Lyapunov equations [16,17] are proposed for the
analysis of structural stability for 1-D singular systems, where
some sufficient and necessary conditions are reported.

Recently, based on a new concept called jump modes, a sta-
bility theory for 2-D singular systems analogous to the inter-
nal stability of 2-D regular systems was developed in [18] and
improved in [1].

This paper investigates some fundamental properties of 2-D
singular systems such as structural stability and jump modes.
We shall extend the results of structural stability in [5] to 2-D
singular systems and give a necessary and sufficient condition
for 2-D singular systems to be jump modes free and structurally
stable. We also propose a generalized Lyapunov approach for
the structural stability analysis of singular Roesser models (2-D
SRM). These results provide some fundamental basis for study
of other 2-D singular system problems such as 2-D singular
robust control [11–14].

The paper is organized as follows. Section 2 presents prelim-
inary results on the internal stability of 2-D singular systems
and the structural stability of 1-D singular systems. Some
properties of the structural stability of 2-D singular systems
are given in Section 3. Section 4 extends the Lyapunov equa-
tions [16] of the structural stability of 1-D continuous singular
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systems to the discrete case; the obtained results are not
dependent on the Drazin inverse of the coefficient matrices
of the system and thus are different from the method in [17].
Based on the results in Section 4, a generalized Lyapunov
approach to the structural stability of 2-D SRM is presented in
Section 5. A brief conclusion is given in Section 6.

2. Preliminaries

Consider a general singular model of 2-D linear discrete
system described by

(�1) : Ex(i + 1, j + 1)

= A0x(i, j) + A1x(i + 1, j) + A2x(i, j + 1), (1)

with standard boundary conditions:

x(i, 0) = xi0, x(0, j) = x0j , (2)

where x(i, j) ∈ Rn is the local state vector, Ak , k=0, 1, 2, and
E are real matrices of appropriate dimensions with E singular,
and E, Ak satisfy the 2-D regular pencil conditions, i.e.

d(z, w) = det(zwE − A0 − zA1 − wA2)

=
n1∑

k=0

n2∑
l=0

aklz
kwl /≡ 0 (3)

for some 0�n1 �n, 0�n2 �n. The system (1) is said to be ac-
ceptable if an1,n2 �= 0 [18]. Note that an acceptable system is
uniquely solvable [18,8]. On the other hand, if the Laurent ex-
pansion of the matrix [Ezw−A1z−A2w−A0]−1, ∞ > |z|�1,
∞ > |w|�1, contains any positive power terms, i.e. terms re-
lated to ziwj , i > 0 or j > 0, the system has jump modes [18].
Obviously, the non-existence of jump modes is equivalent to
the causality of system (1).

Definition 1 (Cai et al. [1]). System (1) is said to be internally
stable [1] if for arbitrary uniformly bounded conditions of (2),
the system state satisfies that limi,j→∞ x(i, j)=0. Here i, j →
∞ means that i → ∞, j → ∞.

Lemma 1 (Zou and Campbell [18], Cai et al. [1]). The 2-D
general singular system (1) is acceptable and internally stable
if and only if

p(z, w) = det(E − A1w − A2z − A0zw) �= 0,

0 < |z|�1, 0 < |w|�1. (4)

Lemma 2. The 2-D acceptable general singular system (1) is
internally stable if and only if

(i) p(a, w) �= 0, 0 < |w|�1; (5a)

(ii) p(z, b) �= 0, 0 < |z|�1 (5b)

(iii) p(z, w) �= 0, |z| = |w| = 1, (5c)

where 0 < |a|�1 and 0 < |b|�1 are arbitrary constant com-
plex numbers.

Proof. Letp(z, w)= zkwlp(z, w), where p(z, w) satisfies that
p(0, w) and p(z, 0) are not identically zero, then from [18] it
follows that the 2-D acceptable general singular system (1) is
internally stable if and only if

p(z, w) �= 0, |z|�1, |w|�1 (6)

Hence the acceptability and Strintzis Theorem 2 [6] imply that
(5) and (6) is equivalent. This completes the proof. �

Before concluding this section we introduce some known
results on structural stability for 1-D singular systems. Consider
the following 1-D singular system:

E x(k + 1) = Ax(k), (7)

where x(k) ∈ Rn is the state vector, E and A are real matrices
of appropriate dimensions, and E is singular. Also assume that
(E − zA) is a regular pencil, i.e. for some complex number
z, det(zE − A) �= 0. Suppose that the system (7) is internally
stable [5]. Then it is said to be structurally stable with respect
to parameter X if there exists a constant �0 > 0 such that when
X is perturbed to X+�X system (7) is still stable with respect
to all �X satisfying ‖�X‖ < �0. Here, X represents the system
parameters E, A, or [E A].

Lemma 3 (Dai and Wang [5]). Let E be singular. Then,

(i) the 1-D singular system (7) is not structurally stable with
respect to matrix E;

(ii) the 1-D singular system (7) is structurally stable with re-
spect to matrix A if and only if it is stable and

deg det(zE − A) = rank E.

Note that the above condition is equivalent to that there
does not exist any positive power items, i.e. terms related to
zl, (l > 0), in the Laurent expansion of the matrix (zE −A)−1,
∞ > |z|�1.

3. Structural stability of 2-D singular systems

The structural stability of 2-D general singular systems with
respect to parameters X can be defined in a similar way as in
the 1-D case. It means that the stability of the systems can be
preserved under sufficiently small perturbations of the param-
eters in X. Here, X represents the system parameters E, Ak ,
k = 0, 1, 2, or [E A1 A2 A0], etc. In the following �n(·) de-
notes the minimum singular-value of a matrix, and

F(z, w) = (E − A1w − A2z − A0zw).

Theorem 1. Suppose that the 2-D acceptable general singular
system (1) is internally stable. Then,

(i) it is not structurally stable with respect to matrices
E, A1, A2;
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