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Abstract

We study the Newton observer design, developed by Moraal and Grizzle, when the exact discrete-time model of the sampled-data plant is not
known analytically. We eliminate the dependence on this exact model with a “hybrid” reconstruction that makes use of continuous-time filters
to produce the numerical value of the exact model. We then implement the Newton method with finite-difference and secant approximations for
the Jacobian. Despite the continuous-time filters, the proposed hybrid redesign preserves the sampled-data characteristic of the Newton observer
because it only employs discrete-time measurements of the output. It also offers flexibility to be implemented with nonuniform, or event-driven,
sampling. We finally study how a line search scheme can be incorporated in this hybrid Newton observer to enlarge the region of convergence.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Progress in nonlinear output feedback control has been ham-
pered by the shortage of constructive tools for observer design.
A further difficulty arises when only sampled measurements of
the output are available because, then, an exact discrete-time
model of the process may be difficult, or impossible, to ob-
tain [3]. In their seminal paper [6], Moraal and Grizzle pose
the sampled-data observer problem as a nonlinear equation in
which the unmeasured states depend on the past samples of
the input and the output through a discrete-time observability
mapping. These states are then estimated via Newton iterations,
with input and output data available in each sampling period.
The resulting scheme, referred to as the “Newton observer”,
is widely applicable and offers ample design flexibility thanks
to numerous ramifications of the Newton algorithm. However,
in its basic form presented in [6], this observer relies on the
availability of an exact discrete-time model, which is seldom
available for nonlinear systems.
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In the absence of an exact discrete-time model, a common
approach is to resort to approximate discretizations, such as
Euler’s method. This approach, however, results in a residual
observer error [3] which, depending on the application and the
sampling rate, may be intolerable. An attempt to reduce this
error by increasing the sampling rate would compromise the
reliability of the Newton observer because, for fast sampling
rates, the observability mapping to be inverted would be ill-
conditioned, and numerical errors would be likely. The alter-
native approach of refining the approximate models for fixed
sampling rates [7,3] inflates the analytical expressions, render-
ing them intractable for Newton observer design.

To circumvent these problems, the approach taken in this
paper is to evaluate the exact discrete-time model numeri-
cally rather than analytically. This is achieved by introducing
continuous-time filters in the Newton observer, which mimic
the solution of the underlying continuous-time plant over one
sampling period, thus producing the numerical outcome of the
exact discrete-time model for a given initial condition. A sep-
arate filter evaluates the observability mapping which is used
in Newton iterations. Because the Jacobian of this mapping
is also unavailable analytically, we approximate it either with
finite-difference or secant methods within Newton iterations.
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A particular secant technique, Broyden’s Method, has already
been applied in [6] to reduce the computational cost of the
Newton algorithm. However, this application still relies on an-
alytical expressions for the exact model and the observability
mapping.

The modified Newton observer in this paper has a hybrid
structure because it combines discrete-time iterations with our
continuous-time filters. However, it preserves its sampled-data
characteristic because it only employs discrete-time measure-
ments of the output. This design differs from a hybrid variant of
the observer presented in [6], in which a continuous-time New-
ton algorithm is employed, and the exact discrete-time model
is still required. In a digital implementation, our continuous-
time filters would be replaced by powerful numerical integra-
tion schemes such as those surveyed in [10]. Compared to the
approach of refining approximate models analytically, these
numerical integration schemes would offer superior versatility
and accuracy.

In Section 2 we review the Newton observer of [6] and
point to the functions that would be unknown in the absence
of an exact-discrete time model. In Section 3 we introduce our
continuous-time filters to numerically evaluate these functions
and to approximate their Jacobians. Section 4 illustrates the re-
sulting hybrid observer on an example. It also shows that the
redesign is suitable for application to plants with nonuniform
sampling periods, such as those arising in networked control
systems, and discusses the design modifications that must be
made in such applications. In Section 5 we incorporate a line
search scheme in the hybrid Newton observer to enlarge its
region of convergence. When the observability properties are
global, the achieved convergence is semiglobal in the finite-
difference step size. Conclusions are given in Section 6.

2. Problem statement

We consider the system

ẋ = f (x, u), y = h(x, u), (1)

where x ∈ Rn, u ∈ Rm, y ∈ R. Given a sampling period
T > 0, we assume that the control u is constant during sampling
intervals [kT, (k + 1)T ) and that the output y is measured at
instants kT. The exact discrete-time model of (1) is

xk+1 = FT (xk, uk), yk = h(xk, uk), (2)

where xk := x(kT), yk := y(kT), uk := u(kT) and FT (xk, uk)

denotes the solution of (1) with initial condition x(0) = xk .
The objective of the Newton observer [6] is to estimate the
unmeasured state vector xk from N consecutive measurements
of outputs and inputs, denoted as

Yk :=

⎡
⎢⎢⎣

yk−N+1
yk−N+2

...

yk

⎤
⎥⎥⎦ , Uk :=

⎡
⎢⎢⎣

uk−N+1
uk−N+2

...

uk

⎤
⎥⎥⎦ . (3)

To express Yk as a function of xk−N+1 and Uk , denote
F

uk

T (xk) := FT (xk, uk) and huk (xk) := h(xk, uk) as in [6], and
note from (2) that

Yk = HT (xk−N+1, Uk)

:=

⎡
⎢⎢⎣

huk−N+1(xk−N+1)

huk−N+2 ◦ F
uk−N+1
T (xk−N+1)

...

huk ◦ F
uk−1
T ◦ · · · ◦ F

uk−N+1
T (xk−N+1)

⎤
⎥⎥⎦ , (4)

where “◦” denotes composition and HT (·, Uk) : RN −→ RN

is the “observability mapping” of the discrete-time model (2).
When this mapping is invertible, the observer problem consists
in solving the N th order nonlinear equation

Yk − HT (xk−N+1, Uk) = 0 (5)

in xk−N+1. This is achieved in [6] with the Newton iterations:

wi+1
k = wi

k +
[
�HT

�w
(wi

k, Uk)

]−1

(Yk − HT (wi
k, Uk)),

i = 0, . . . , d − 1, (6)

where the number of iterates, d, is a design parameter. The final
estimate wd

k of xk−N+1 is propagated in time by N − 1 steps
to obtain

x̂k = F
uk−1
T ◦ F

uk−2
T ◦ · · · ◦ F

uk−N+1
T (wd

k ), (7)

and the initial condition for the next sampling period is assigned
to be

w0
k+1 = FT (wd

k , uk−N+1). (8)

A shortcoming of this algorithm is that it relies on an analytical
expression for the exact discrete-time model FT in (2). Indeed
(7)–(8) directly require the knowledge of FT , while (6) relies
on the knowledge of HT and its Jacobian, which also depend
on FT as in (4). To calculate the exact model FT analytically,
however, we need a closed form solution to the initial value
problem

ẋ = f (x, uk), x(0) = xk (9)

over one sampling interval [kT , (k+1)T ), which is impossible
to obtain in general. In the next section, we solve this problem
by numerically integrating (9) to compute HT and FT within
each sampling period, and approximate �HT /�w via finite-
difference or secant methods.

In this paper, we assume that HT is square, i.e. N =n. Other-
wise inverses should be replaced by pseudo-inverses. Likewise,
as in [6] we assume that observability is uniform in control u.

3. Hybrid redesign with numerical integration

To numerically evaluate FT (wd
k , uk−N+1) in (8) at the kth

sampling period we employ the continuous-time filter:

�1�̇ = f (�, u), �(t0) = wd
k , u = uk−N+1, t0 = kT. (10)
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