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Abstract

In this paper the problem of computing uncertainty regions for models identified through an instrumental variable technique is considered.
Recently, it has been pointed out that, in certain operating conditions, the asymptotic theory of system identification (the most widely used
method for model quality assessment) may deliver unreliable confidence regions. The aim of this paper is to show that, in an instrumental
variable setting, the asymptotic theory exhibits a certain “robustness” that makes it reliable even with a moderate number of data samples.
Reasons for this are highlighted in the paper through a theoretical analysis and simulation examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Model quality assessment is an important (and also chal-
lenging) problem in system identification. In fact, it has been
widely recognized that an identified model is of little use in
practical applications if an estimate of its reliability is not pro-
vided together with the model itself. In other words, if S is the
data-generating system and Ŝ is the identified model, it is fun-
damental to characterize the system-model mismatch, i.e. the
distance between S and Ŝ (see [11,9,5,1]).

One of the best-known tools for model quality assessment
is the asymptotic theory of system identification [10,13]. The
asymptotic theory works in a probabilistic framework and re-
turns asymptotic ellipsoidal confidence regions for S—namely,
regions in the parameter space to which the data-generating
system parameter belongs with a pre-assigned probability when
the number of data grows unbounded.

In real applications, the major drawback with the use of the
asymptotic theory is that only a finite number of data points is
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available. Consequently, the asymptotic theory applies only ap-
proximately, and it is a common experience that it returns sen-
sible results in many cases, but not always. As a matter of fact,
it has been recently shown that—in condition of poor excitation
and depending on the underlying identification setting—the el-
lipsoid obtained through the asymptotic theory may even be
completely unreliable (see [3,6]).

This limitation of the asymptotic theory is quite severe be-
cause lack of excitation is common in many applications, par-
ticularly when the identification has to be performed in closed-
loop with restricted bandwidth. This happens, for example, at
the first iterations of iterative controller design schemes (see
[2,4,7,8,14]). Moreover, at a more general level, one can argue
that the model quality assessment is even more important when
the system is poorly excited as this means that the system-
model mismatch is significant.

Our previous contribution [6] focuses on prediction error
minimization (PEM) identification techniques and shows the
problems which may arise if the model structure is not appro-
priately selected relative to the identification setup. Herein, we
consider the instrumental variable (IV) identification methods
and we investigate the applicability of the asymptotic theory for
the assessment of the model quality in situations where poor in-
formation may occur. The good news conveyed by this paper is

http://www.elsevier.com/locate/sysconle
mailto:sgaratti@elet.polimi.it
mailto:campi@ing.unibs.it
mailto:bittanti@elet.polimi.it
http://bsing.ing.unibs.it/~campi/


S. Garatti et al. / Systems & Control Letters 55 (2006) 494–500 495

that in IV settings the asymptotic theory exhibits a “robustness”
property so that it can be safely used in real applications even
in case of poor excitation and for moderate data samples. The
reasons for such a “robustness” are highlighted through theo-
retical arguments.

1.1. Structure of the paper

In Section 2 the IV identification setting is presented and
a brief summary of the standard asymptotic theory is given.
Moreover, the problems that may arise when using the asymp-
totic theory in presence of poor excitation are pointed out. Sec-
tion 3 delivers a new asymptotic result, also valid in “singular”
conditions, precisely defined in Section 3. This result makes it
possible to show in Section 4 that the asymptotic theory for IV
methods can be safely used even when data are poorly exciting.
Some simulation results are given in Section 5.

2. Model quality assessment for IV identification

2.1. Mathematical setting

Throughout the paper we suppose that the data are generated
by the following dynamical system, which is assumed to be
asymptotically stable:

y(t) = �(t)′ϑ0 + v(t), (1)

where

�(t) = [y(t − 1) . . . y(t − na) u(t − 1) . . . u(t − nb)]′

is the n-vector (n = na + nb) of observations and

ϑ0 = [−a0
1 . . . − a0

na
b0

1 . . . b0
nb

]′

is the true system parameter vector, supposed to be an interior
point of an a priori known compact set �.

We will also write system (1) in the operational form

A(z−1)y(t) = B(z−1)u(t) + v(t),

where

A(z−1) = 1 + a0
1z−1 + · · · + a0

na
z−na ,

B(z−1) = b0
1z

−1 + · · · + b0
nb

z−nb ,

and z−1 is the unit-time delay operator.
The input u(t) and the residual process v(t) are generated

according to the following scheme which encompasses closed-
loop as well as open-loop configurations:

u(t) = G(z−1)r(t) + H(z−1)e(t), v(t) = V (z−1)e(t), (2)

where G(z−1), H(z−1), V (z−1), r(t) and e(t) satisfy the fol-
lowing assumption.

Assumption 1. The transfer functions G(z−1), H(z−1) and
V (z−1) are rational, proper and asymptotically stable. In addi-
tion, V (z−1) has no zeroes on the unit circle in the complex
plane. e(t) is a sequence of independent zero mean random

variables with variance �2 > 0 and such that E[|e(t)|4+�] < ∞,
for some � > 0. r(t) is a wide sense stationary, stochastic, er-
godic, external input sequence. r(t) and e(t) are independent.

Remark 1. For subsequent use we note that both u(t) and
y(t) can be seen as the sum of two independent processes, one
depending on r(t) and the other one depending on e(t). That
is, u(t) = ur(t) + ue(t) and y(t) = yr(t) + ye(t), where

ur(t) = G(z−1)r(t), ue(t) = H(z−1)e(t),

yr(t) = B(z−1)

A(z−1)
G(z−1)r(t),

ye(t) = B(z−1)

A(z−1)
H(z−1)e(t) + 1

A(z−1)
V (z−1)e(t).

According to the IV technique [10,13,12] the estimate ϑ̂N of
ϑ0 is computed as

ϑ̂N = solϑ∈�

{
1

N

N∑
t=1

�(t)�(t)′ϑ = 1

N

N∑
t=1

�(t)y(t)

}
, (3)

where N is the number of data points and �(t), the so-called in-
strumental variable, is a n-dimensional, stationary, stochastic
process, uncorrelated with the residual process v(t) and corre-
lated with the observation vector �(t).

Throughout the paper we assume that �(t) is chosen as fol-
lows:

Assumption 2. �(t) = �r (t), where �r (t) is defined as

[yr(t − 1) . . . yr (t − na) ur(t − 1) . . . ur (t − nb)]′.
In other words, the instrumental vector �(t) is the part of the
observation vector depending on the external input sequence
r(t).

Remark 2. The choice �(t) = �r (t) is optimal in that it mini-
mizes the estimation error variance (see [12]). In practice, the
typical way of generating �r (t) is to first identify an initial
model (through some identification method) and then by oper-
ating this model with the only signal r(t) active. This procedure
can be refined in an iterative way.

Let �∗ be the set of solutions to equation

E[�(t)�(t)′]ϑ = E[�(t)y(t)]. (4)

It can be proved (see [10,12,13]) that, in the present setting, the
distance between ϑ̂N and �∗ ∩ � tends to zero, as N → ∞.

Moreover, thanks to Assumption 2 and Eq. (1), Eq. (4) can
be rewritten as

E[�r (t)�(t)′]ϑ = E[�r (t)�(t)′]ϑ0 + E[�r (t)v(t)],
and, since �(t)=�r (t)+�e(t) and r(t) is independent of e(t),
the last equation is equivalent to

E[�r (t)�r (t)
′](ϑ − ϑ0) = 0. (5)
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