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Summary: Objectives. Currently, there are no objective measures capable of distinguishing between all four voice
signal types proposed by Titze in 1995 and updated by Sprecher in 2010. We propose an objective metric that distin-
guishes between voice signal types based on the aperiodicity present in a signal.
Study design. One hundred fifty voice signal samples were randomly selected from the Disordered Voice Database
and subjectively sorted into the appropriate voice signal category on the basis of the classification scheme presented in
Sprecher 2010.
Methods. Short-time Fourier transform was applied to each voice sample to produce a spectrum for each signal. The
spectrum of each signal was divided into 250 time segments. Next, these segments were compared to each other and
used to calculate an outcome named spectrum convergence ratio (SCR). Finally, the mean SCR was calculated for
each of the four voice signal types.
Results. SCR was capable of significantly differentiating between each of the four voice signal types (P < 0.001).
Additionally, this new parameter proved equally as effective at distinguishing between voice signal types as currently
available parameters.
Conclusion. SCR was capable of objectively distinguishing between all four voice signal types. This metric could be
used by clinicians to quickly and efficiently diagnose voice disorders and monitor improvements in voice acoustical
signals during treatment methods.
Key Words: Turbulence–Signal spectrum analysis–Short time Fourier transform–Voice signal classification–Spec-
trum convergence ratio.

INTRODUCTION

In 1995, Titze proposed classifying voice signals into three
signal types—type 1 voice signals are nearly periodic, type 2
voice signals have strong modulations and subharmonics, and
type 3 signals are not periodic.1 Type 1 and type 2 signals can
be analyzed by perturbation parameters (jitter, shimmer).
Nonlinear parameters, such as correlation dimension and
second-order entropy, have been proven successful at differen-
tiating between type 2 and type 3 voice signals.2 In 2010, a new
voice type to Titze’s voice classification, type 4 voice, was
introduced.2 The difference between type 3 voice and type 4
voice signals in this scheme is that type 3 voice is chaotic
with finite dimension, whereas type 4 voice is defined by severe
breathiness and primarily stochastic noise characteristics. That
is, the correlation dimension for type 3 voice signals converges
to a specific value with increasing embedding dimension,
whereas that of type 4 does not. Additionally, the spectrums
for type 3 voice signals are characterized by energy centraliza-
tion in lower frequencies, whereas type 4 voice signals exhibit a
searing of energy across a broad range of frequencies.

Current linear parameters such as jitter and shimmer can
classify type 1 and type 2 voice signals. Jitter represents the
cycle-to-cycle variation in signal frequency and shimmer mea-
sures the cycle-to-cycle variation in signal amplitude.2 Because

these measurements are determined by estimating the funda-
mental frequency and peak amplitude of each phonatory cycle,
they are unable to produce stable estimates for irregular phona-
tion. Thus, they are neither valid nor reliable for analyzing type
3 and type 4 voice signals.

To combat this issue, Titze et al suggested that nonlinear pa-
rameters could quantify the difference between more complex
voice signals. These parameters are Lyapunov exponents, cor-
relation dimension (D2), and Kolmogorov entropy.2,3

Lyapunov exponents, which are the average exponential rates
of divergence or convergence of nearby orbits in phase space,
are effective descriptors of chaos.4 Thus, a higher Lyapunov
exponent indicates that a system is more chaotic. Correlation
dimension analysis calculates the number of degrees of freedom
necessary to describe a system. A system with a higher degree
of complexity requires more degrees of freedom to characterize
its dynamic state.4 Finally, Kolmogorov entropy is a description
of the rate of information loss in a dynamic system.5 A larger
Kolmogorov entropy value indicates a more complex system.

Calculations of correlation dimension and Lyapunov expo-
nents from excised larynx experiments demonstrate that
low-dimensional chaotic behavior exists in phonation.5

Furthermore, correlation dimension and second-order Kolmog-
rov entropy (K2) have been proven be useful in the analysis of
sustained and running vowels.4 However, when the signal is
contaminated by a large amount of noise, for example, aspira-
tion caused by turbulence in the vocal tract, nonlinear parame-
ters break down. The turbulent energy in the vocal tract causes
the signal to lose its self-similarity property, making these
nonlinear calculations invalid.6 Thus, nonlinear metrics such
as D2, Kolmogorov entropy, and Lyapunov exponent cannot
be calculated for this type of voice signal. Currently, only sub-
jective measures are capable of distinguishing between type 3
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and type 4 voice signals, making it difficult for researchers to
establish criterion to classify voice signals in this scheme.

We reasoned that through using short-time Fourier transform
(STFT) analysis, we could develop a continuous metric capable
of distinguishing between all four types of voice signals. STFT
is a powerful analysis tool for audio signal processing because it
tracks how frequency components in a signal change with
time.7–9 Thus, by adjusting it to the proper time and
frequency resolution, the transform is proved to be sensitive
in detecting small changes in the periodicity of a signal. We
examined each signal’s spectrum because if the voice signal
is affected by turbulent noise, the chaotic energy would
deteriorate that spectrum’s convergence. This is because a
spectrum of a periodic system would consist of segments that
closely resembled each other. Thus, as the complexity and
aperiodicity of a system increases, the segments would
resemble each other less. We developed a metric called
spectrum convergence ratio (SCR) to quantify the degree that
each segment resembled each other, or converged.

In this study, we hypothesized that SCR would be highest in
type 1 voice signals and decreased as voice type increased.
Additionally, we compared this metric to currently existing
evaluation tools and hypothesized that SCR would be as effec-
tive at distinguishing between each voice signal type as these
currently existing methods.

METHODS

Short-time Fourier transform

Because of the fact that some deterministic characteristics might
be obscured by turbulent energy, we observed the signal’s spec-
trum and time-frequency relationship to classify the signals into
voice types. Traditionally, this is done by subjective classification.

Fourier analysis is a well-known tool in signal processing and
aims to analyze the manifestation of time domain signals in the
frequency domain and vice versa. The STFT is an extension of
Fourier analysis. It defines a class of time-frequency distribu-
tions which specify complex amplitude versus time and fre-
quency data for any signal.9 Instead of analyzing the
frequency components of the entire signal, the discrete Fourier
transform is performed on segments of the signal, enabling the
user to analyze changes (amplitude and phase) in frequency
over time. STFT is commonly used to analyze voice signal’s
spectrums in the pattern recognition field. When applying
STFT, the time sequence is divided into segments using a win-
dowing function, and the Fourier transform of each segment is
found. The discrete STFT is defined by

Sxðu; kÞ ¼
XþN

�N

xðnÞmðn� kÞe�jun; (1)

where xðnÞ is the time series and mðn� kÞ is the window func-
tion. At moment n, the window function reduces xðnÞ to zero
outside a specified interval. As tag n moves along the time
axis, the observing window is slid along the time axis, capturing
local time segments. The result of this transform is a set of co-
efficients denoted by Sxðu; kÞ.

Window size, which decides the number of sampling points
in a local time segment, is an important factor in STFT.
Different segment lengths produce different frequency and
time resolutions. If the local time segment length is too small,
frequency resolution will be poor, but if the length is too large,
it will be difficult to analyze the details of changes in fre-
quency.10 In this study, a window size of 0.012 seconds was
chosen, producing 250 segments for each sample.

Spectrum convergence ratio

Two hundred fifty spectrums were produced after applying STFT
for each signal. Each segment was compared with the other seg-
ments by plotting their amplitudes as shown in Figure 1A. Under
the assumption that the voice signal is a sustained vowel with a
constant fundamental frequency, a signal that displays strong
periodicity (type 1) would have segments that closely resemble
each other. If a signal is breathy, or aperiodic (types 3 and 4),
the segments should vary considerably from each other. We
defined a variable called the dynamic range of segments’ spectro-
gram (DRSS) to quantify the variation in frequency. By
observing Figure 1A,C, we are able to distinguish type 1 and
type 4 signals by measuring the area under the curve.
In a discrete model, the area can be calculated by

DRSS ¼
X

½CmaxðnÞ � CminðnÞ� ; (2)

where CmaxðnÞ is the maximum-energy curve expression,
whereas CminðnÞ is the minimum-energy curve expression.
They provide the maximum and minimum coefficients value
in same time tag of all signal segments.
To find SCR, we first generated Sxðu; nÞ of a voice signal and

recorded it into a matrix. In this matrix, each row is a spectrum
of a segment, whereas each column containing the Fourier co-
efficients with same time tag in every segment. Next, we
normalized each row by the maximum element in it and then
plotted them to create a convergence graph. The difference be-
tween the maximal value and minimal value at every moment is
the DRSS. We defined maximum energy (MAE) as

MAE ¼
X

CmaxðnÞ: (3)

Finally, the convergence ratio, which we named SCR, is
found using the formula

SCR ¼ �ln

�
DRSS

MAE

�
: (4)

Similar to jitter and shimmer, SCR is a parameter extracted
from linear analysis results and is capable of analyzing signals
with high-dimensional chaos turbulence. SCR comes from signal
spectrogram analysis, but the methods to calculate DRSS and
MAE of the signals’ spectrogram were applied discrete integral
and exponential calculation, making them nonlinear methods.

Correlation dimension (D2) analysis

Correlation dimension (D2) analysis is used to compare the
metric proposed in this article to a metric that has already been
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