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Normal forms and approximated feedback linearization in discrete time
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Abstract

The paper discusses approximated feedback linearization of nonlinear discrete-time dynamics which are controllable in first approximation
and introduces two types of normal forms. The study is set in the context of differential/difference representations of discrete-time
dynamics proposed in [Monaco, Normand-Cyrot, in: Normand-Cyrot (Ed.), Perspectives in Control, a Tribute to Ioan Doré Landau,
Springer, Londres, 1998, pp. 191–205].
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of simplifying the nonlinearities of a given
discrete-time dynamics through coordinates change and
feedback, launched in [14] in continuous-time control the-
ory finds its roots in Cartan’s method of equivalence or
Poincaré’s normal forms [24]. It has been more recently fur-
ther developed and renewed making reference to controlled
dynamics (see [13,7,11,23] and the references therein). On
these bases, stabilizing strategies for dynamics with bifur-
cations have been proposed in [12]. While the approach
can be similarly developed for both cases of vector fields
(differential dynamical systems) and maps (discrete-time
systems) [24], such a parallelism becomes difficult when
dealing with forced dynamical systems. Even if many
analogies can be set, differentiated studies are necessary. In
discrete time most of the contributions are concerned with
quadratic or cubic normal forms as this is in general enough
to characterize control properties: quadratic approximated
feedback linearization under dynamic feedback is studied
in [1], stabilization of systems with uncontrollable modes
or bifurcations in [8], observer design for systems with
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unobservable modes in [3]. In [15], quadratic and cubic nor-
mal forms are introduced to propose a systematic classifica-
tion of discrete-time bifurcations taking place at equilibria
due to loss of linear stabilizability. Following [15], homo-
geneous normal forms of degree m have been proposed in
[9] for dynamics with controllable linear part.

With respect to these contributions [1,8,15,9], the problem
is presently set and solved for dynamics controllable in first
approximation in the formalism of differential/difference
representations of discrete-time dynamics proposed in [19].
Such a set up, which does not imply any loss of generality
in the present context, makes it possible to give for the first
time a quite complete answer to the problem: two types of
normal forms are proposed; the generic case of degree m is
solved; the invariants are introduced and their role is clari-
fied for achieving approximated feedback linearization. The
advantage of the proposed approach is even more striking
when considering sampled dynamics as illustrated by the
examples worked out throughout the paper.

The study is addressed step-by-step, through homoge-
neous approximations of increasing degree of the Taylor-
like expansions of the dynamics, coordinates changes and
feedbacks. For each degree of approximation, say m, writ-
ing down the so-called homological equations which must
be solved for achieving linearization, normal forms of
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degree m containing all the nonremovable nonlinear terms
are characterized. As in continuous time [11,23], two kinds
of normal forms are introduced depending whether one priv-
ileges cancellation of the nonlinear terms in the drift (dual
normal form) or in the control vector fields (Kang’s nor-
mal form). Provided the linear part and lower degree terms
are fixed, homogeneous normal forms at a fixed degree are
unique modulo homogeneous transformations of the same
degree and a set of polynomials which are invariants under
homogeneous transformations, the so called homogeneous
invariants, are defined. The nullity of these invariants char-
acterizes homogeneous feedback linearization at a fixed de-
gree. It must be stressed that the normal forms here devel-
oped are different from those introduced in previous work
for discrete-time dynamics in the form of maps. Prelimi-
nary results were given in [22] and in [21] with reference to
quadratic approximations.

The paper is organized as follows. Section 2 is devoted
to define the context and set the problem. Homogeneous
transformation, feedback and feedback linear equivalences
are formulated in the proposed differential/difference set up.
Sections 3 and 4 contain the results. Homogeneous feedback
and feedback linear equivalences at degree m are character-
ized either through the solvability of the homological equa-
tions of degree m or the nullity of the invariants. Merging the
results, necessary and sufficient conditions ensuring approx-
imated feedback equivalence are given. On these bases, two
different types of homogeneous normal forms and extended
normal forms are described in Section 4. Two examples are
discussed. Notations are introduced in the sequel.

Notations: The state variables � and/or x belong to X,
an open set of Rn and the control variables v and/or u be-
long to U, a neighborhood of zero in R. All the involved
objects, maps, vector fields, control systems are analytic on
their domains of definition, infinitely differentiable admit-
ting convergent Taylor series expansions. A vector field on
X, analytically parameterized by u, G(x, u) ∈ TxX defines
a u-dependent differential equation of the form dx+(u)/du=
G(x+(u), u) where the notation x+(u) indicates that the
state evolution is a curve in Rn, parameterized by u. A Rn-
valued mapping F(., u) : x → F(x, u), denotes a forced
discrete-time dynamics while F : x → F(x) and/or F(., 0)

denotes unforced evolutions. Given a generic map on X, its
evaluation at a point x is denoted indifferently by “(x)” or
“|x”. JxF |x=0 = (dF(x)/dx)|x=0 indicates the Jacobian of
the function evaluated at x = 0. Given a vector field G on
X and assuming that F is a diffeomorphism on X, F∗G de-
notes the transport of G along F , defined as the vector field
on X verifying F∗G|F =(JxF )G; analogously indicating by
Fp=F ◦. . .◦F , the p-times composition of F , Fp∗ G denotes
the transport of G along Fp verifying F

p∗ G|Fp = (JxF
p)G.

The upperscript (.)[m] stands for the homogeneous term of
degree m of the Taylor series expansion of the function or
vector field into the parentheses. Analogously, R[m](.) (resp.
R�m(.)) stands for the space of vector fields or functions

whose components are polynomials (resp. formal power se-
ries) of degree m (resp. of degree �m) in the variables into
the parentheses. The results are local in nature and conver-
gence problems are not addressed so that the solutions pro-
posed will be referred to as formal ones.

2. Context and problem statement

We consider throughout the paper a single-input discrete-
time dynamics, � → F(�, v), which is controllable in first
approximation around the equilibrium pair (0, 0). Without
loss of generality as justified in the sequel, we make use of
the differential/difference representation (DDR) introduced
in [19] to describe such a dynamics; i.e. consider

�+ = F(�), (1)
d�+(v)

dv
= G(�+(v), v); �+(0) = �+, (2)

where G(., v) admits the Taylor-type expansion around
0; G(., v) := G1 + ∑

i �1 (vi/i!)Gi+1 with G1 :=
G(., 0); Gi+1 = (�iG(., v)/�vi)|v=0 for i�1; F(0) = 0
and G1(0) �= 0.

To get more familiar with the representation (1–2), let the
following comments.

• Provided completeness of the vector field G(., v), the as-
sociated flow is defined for any v, a nonlinear difference
equation � → F(�, v) can be recovered integrating (2) be-
tween 0 and v(k) with initialization at (1), �+(0) = �+ =
F(�(k)); we get

�(k + 1) = �+(v(k)) = F(�(k), v(k))

= F(�(k)) +
∫ v(k)

0
G(�+(w), w) dw.

An explicit exponential representation of F(., v) in terms
of the Gi is given in [20].

• Reversing the arguments and starting from a difference
equation � → F(�, v), the existence of (1–2) follows
from the existence of G(., v) verifying G(F(., v), v)) =
�F(., v)/�v. The invertibility of F(., 0) is sufficient to
prove that G(., v) can be locally uniquely defined as
G(., v) := (�F(., v)/�v)|F−1(.,v).

• The proposed formalism provides a new paradigm for
modeling discrete-time as well as hybrid phenomena cou-
pling continuous-time and discrete dynamics with jumps,
switches and resets. It makes possible the complementary
use of geometric and algebraic techniques so providing
equivalent formalism and tools between continuous time
and discrete time; a parallelism which is lost in the usual
context of discrete-time dynamics in the form of maps as
soon as nonlinear dynamics are concerned. Finally, let us
note that the study of sampled dynamics can always be
performed in such a context due to the invertibility of the
drift under sampling.
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