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a b s t r a c t

Urban midblock crashes are influenced mainly by traffic operation and roadway geometric
features. In this paper, 10-year crash data from 1,506 directional urban midblock segments
in Nebraska were analyzed using the multivariate random parameters zero-inflated nega-
tive binomial model to account for unobserved heterogeneity produced by correlations
across segments, correlations across crash collision types, excessive zero crashes, and over
dispersion. The multivariate random parameters zero-inflated negative binomial model
was superior to many common crash frequency models in terms of both goodness of fit
and prediction accuracy. Compared with the multivariate fixed parameters zero-inflated
negative binomial model, the multivariate random parameters zero-inflated negative
binomial model identified fewer key influencing factors and revealed segment-specific
effects of these factors on different crash types. It showed that the number of lanes, annual
average daily traffic per lane, and segment length might have non-positive effects on crash
frequencies. Segments with a speed limit of 45 mph had fewer crashes than did those with
lower speed limits, and there were fewer crashes on the segments in Omaha than on those
in Lincoln. It was also found that neither the presence of a shoulder, on-street parking, or
one-way traffic, nor lane width had significant influences on crash frequencies. These find-
ings are informative for transportation agencies to take correct and efficient measures to
accommodate diverse transportation demands without reducing traffic safety. By contrast,
the fixed parameters model produced results consistent with intuition, but the results were
insufficient to provide actionable recommendations.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Traffic crashes can be divided into junction crashes and non-junction crashes based on where they occur (National Center
for Statistics and Analysis, 2017). Non-junction crashes, also referred to as midblock crashes, are crashes that occur on
roadway segments. In 2015, they accounted for 41.7% of the total number of crashes and 63.3% of fatal crashes in the United

https://doi.org/10.1016/j.amar.2018.03.001
2213-6657/� 2018 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Civil, Construction, and Environmental Engineering, Iowa State University, InTrans, 2711 South Loop Drive,
Suite 4700, Ames, IA 50010-8664, United States.

E-mail addresses: cliu9@iastate.edu (C. Liu), mo.zhao@vdot.virginia.gov (M. Zhao), anujs@iastate.edu (A. Sharma).

Analytic Methods in Accident Research 17 (2018) 32–46

Contents lists available at ScienceDirect

Analytic Methods in Accident Research

journal homepage: www.elsevier .com/ locate /amar

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amar.2018.03.001&domain=pdf
https://doi.org/10.1016/j.amar.2018.03.001
mailto:cliu9@iastate.edu
mailto:mo.zhao@vdot.virginia.gov
mailto:anujs@iastate.edu
https://doi.org/10.1016/j.amar.2018.03.001
http://www.sciencedirect.com/science/journal/22136657
http://www.elsevier.com/locate/amar


States (National Center for Statistics and Analysis, 2017). Thus, reducing midblock crashes is critical for improving traffic
safety. Although midblock crashes are usually not directly influenced by junctions, they are greatly influenced by traffic
operation and roadway geometric factors, which are much more complex on urban roadways than on rural roadways. On
one hand, urban roadway segments usually have large traffic volumes and face diverse traffic demands, which might
increase crash opportunities; for example, an increase in the number of crosswalks might increase the frequency of pedes-
trian crashes. On the other hand, urban development might limit or even reduce available roadway space, which might also
increase crash risk; for example, vehicle lanes may be narrowed to make room for biking lanes and on-street parking. This
predicament requires transportation agencies to determine what traffic operation and roadway geometric factors really
influence the frequency of urban midblock crashes so that they can take effective measures to accommodate traffic demands
without reducing traffic safety.

Previous studies have shown that important traffic operation and roadway geometric factors influencing midblock
crashes include traffic volume (Bonneson and Mccoy, 1997; Greibe, 2003; Dumbaugh, 2006; Zhang et al., 2012; Manuel
et al., 2014; Ferreira and Couto, 2015), speed limit (Greibe, 2003; Dumbaugh, 2006; Pande et al., 2010), on-street parking
(Bonneson and Mccoy, 1997; Greibe, 2003), lane width (Greibe, 2003; Manuel et al., 2014), median type (Bonneson and
Mccoy, 1997; Sawalha and Sayed, 2001), median width (Dumbaugh, 2006), number of lanes (Sawalha and Sayed, 2001;
Greibe, 2003; Dumbaugh, 2006), land use (Bonneson and Mccoy, 1997; Sawalha and Sayed, 2001; Greibe, 2003), pavement
condition (Usman et al., 2010; Xiong et al., 2014; Zeng and Huang, 2014), access points (Lee et al., 2011; Zeng and Huang,
2014), and so on. However, studies’ findings have often been inconsistent, that is, some factors might have had different
effects in different studies. For example, speed limit was found to be not significant for midblock crash frequencies on a
27-mile urban arterial in Florida Department of Transportation District 5 (Dumbaugh, 2006), whereas it was the most impor-
tant variable for midblock crash frequencies on a 19.659-mile corridor of U.S. Route 19 in Pasco County, Florida (Pande et al.,
2010). This inconsistency implies that, in practice, the effects of some factors on crashes might be location specific. Ignoring
this unobserved heterogeneity might produce biased and inefficient estimated parameters, leading to erroneous inferences
and predictions (Mannering et al., 2016).

One solution to account for unobserved heterogeneity across observations in crash frequency analysis is to adopt random
parameters count data models (Lord and Mannering, 2010; Chen and Tarko, 2014; Venkataraman et al., 2014; Barua et al.,
2015, 2016; Coruh et al., 2015; Alarifi et al., 2017; Bhat et al., 2017; Chen et al., 2017; Rista et al., 2017). Compared to fixed
parameters models assuming the same effects of factors on all observations, random parameters models can capture the
observation-specific effects of factors on crash frequency and have also been widely applied in crash injury severity analyses
(Russo et al., 2014; Zhao and Khattak, 2015, 2017, Behnood and Mannering, 2016, 2017a, 2017b; Naik et al., 2016; Anderson
and Hernandez, 2017; Fountas and Anastasopoulos, 2017; Seraneeprakarn et al., 2017) and crash rate analyses
(Anastasopoulos, 2016). Especially, for the data where one entity has multiple observations, such as panel data, group-
specific random parameters models may be adopted to account for heterogeneity among groups (Wu et al., 2013; Sarwar
et al., 2017). More details about random parameters formulations can be seen in the study by Mannering et al. (2016).

Crash data usually can be divided into multiple types based on different criteria. For example, midblock crashes can be
divided based on the type of collision: rear-end crashes, right-angle crashes, side-swipe (same direction) crashes, single-
vehicle crashes, overturn crashes, and so on. A single factor might be expected to have different effects on different collision
types, causing different outcomes. Thus, identifying the specific significant factors for each collision type is important for
transportation agencies so they can take accurate countermeasures to reduce specific types of collision. When these crashes
are jointly analyzed, multivariate count data models are necessary, as univariate models may produce biased and inefficient
results because the unobserved heterogeneity often present across crash types is ignored (Huang et al., 2008; Dong et al.,
2014a; Mannering et al., 2016). Most multivariate count data models in literature were derived from the multivariate Pois-
son log-normal (MVPLN) model (Ma et al., 2008; El-Basyouny and Sayed, 2009; Aguero-Valverde and Jovanis, 2010; Barua
et al., 2014; Zhan et al., 2015; Serhiyenko et al., 2016; Huang et al., 2017; Osama and Sayed, 2017; Zhao et al., 2017;
Wang et al., 2018), which is flexible enough to accommodate various correlations among crash types, but it does not work
well for crash data with excess zeros (Dong et al., 2014a). In addition to the multivariate Poisson log-normal model, the nat-
ural extensions of the Poisson and negative binomial (NB) models to multivariate data, i.e., the multivariate Poisson (MVP)
model (Johnson et al., 1997; Ma and Kockelman, 2006) and the multivariate negative binomial (MVNB) model
(Anastasopoulos et al., 2012; Chen et al., 2017), also have been used in some studies. The multivariate Poisson/negative bino-
mial models assume positive correlations across crash types, but they cannot deal with crash data with excess zeros either,
as the marginal distribution per crash type is still a Poisson/negative binomial model.

The zero-inflated models are often adopted for univariate count data with excess zeros (Lambert, 1992; Lord et al., 2005).
The excess zeros in crash frequency data can be explained in two ways for zero-inflated models. One explanation is that
there is a two-state crash-generating process: (i) a normal count state and (ii) an accident-free state, which can be thought
of as a nearly safe state, with accidents occurring extremely rarely (Malyshkina and Mannering, 2010). The other explanation
is that there is a two-state crash-reporting process: (i) one in which accidents did occur, but they were not reported for some
reason, such as for minor crashes, which were not necessary to report, or hit-and-run crashes, i.e., a crash-underreporting
state, and (ii) one in which all accidents that occurred were reported, i.e., a normal crash reporting state. This explanation
applies to many scenarios, as crash underreporting has been found to be common in practice (Hauer and Hakkert, 1988;
Elvik and Mysen, 1999; Yamamoto et al., 2008; Lord and Mannering, 2010; Yannis et al., 2014). Both explanations may justify
the application of zero-inflated models in our case, although it is difficult to determine what the truth is by observing the
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