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a b s t r a c t

Conventional multichannel noise reduction techniques are formulated by splitting the processed micro-
phone observations into two terms: filtered noise-free speech and residual additive noise. The first term
is treated as desired signal while the second is a nuisance. Then, the objective has typically been to reduce
the nuisance while keeping the filtered speech as similar as possible to the clean speech. It turns out that
this treatment of the overall filtered speech as the desired signal is inappropriate as will become clear
soon. In this paper, we present a new study of the multichannel time-domain noise reduction filters.
We decompose the noise-free microphone array observations into two components where the first is cor-
related with the target signal and perfectly coherent across the sensors while the second consists of resid-
ual interference. Then, well-known time-domain filters including the minimum variance distortionless
response (MVDR), the space–time (ST) prediction, the maximum signal-to-noise ratio (SNR), the linearly
constrained minimum variance (LCMV), the multichannel tradeoff, and Wiener filters are derived.
Besides, the analytical performance evaluation of these time-domain filters is provided and new insights
into their functioning are presented. Numerical results are finally given to corroborate our study.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Multichannel noise reduction has been garnering increasing re-
search efforts since the pioneering work of Flanagan et al. in 1985
[1]. In fact, numerous multichannel noise reduction approaches
have been recently developed [1–12]. These approaches have a
common objective, which is to recover the noise-free signal at
the reference microphone by employing the spatial and temporal
properties of the observed mixtures of sounds.

Noise reduction can be achieved in either the time or some
transform domains that include Fourier, Karhunen-Loève, cosine,
and Hadamard [7]. Nevertheless, the transformation to the fre-
quency domain is the most widely adopted since it offers an effi-
cient way of implementation. For instance, in [8] Gannot et al.
proposed a channel transfer function ratio (CTFR) based general-
ized side-lobe canceler (GSC) where the CTFRs are estimated online
using the non-stationarity of speech. This approach was then ex-
tended to extract multiple target sources using the linearly con-
strained minimum variance (LCMV) in [9]. To properly design
noise reduction filters [e.g., LCMV, minimum variance distortion-
less response (MVDR), tradeoff or parameterized Wiener filter]

some fundamental issues have to be taken into account. First, the
parameters affecting the tradeoff of noise reduction versus speech
distortion and the tradeoff of interference rejection versus ambient
noise reduction have to be determined [6,13]. Second, it is known
that, similar to the conventional single-channel processing [14],
the knowledge of only noise and noisy-data statistics is sufficient
to implement noise reduction filters [2,4–6]. Hence, the accurate
estimation of these statistics is paramount to effectively reduce
the noise without causing significant speech distortion [6]. In
[12], Cornelis et al. analytically studied the robustness of the
parameterized multichannel Wiener filter to second-order-
statistics estimation errors. Finally, even though frequency-domain
noise reduction filters are theoretically equivalent to their time-
domain counterparts, approximating the acoustic channel effect
in the frequency domain remains a major issue from both practical
and theoretical standpoints. Indeed, the time-domain linear convo-
lution is commonly approximated by a scalar multiplication in the
frequency domain. This approximation is reasonable provided that
the analysis window is larger than the channel impulse responses.
However, speech signals are inherently non-stationary, and taking
long analysis windows compromises the accurate tracking of noise
and speech statistics, thereby increasing the residual distortions.
To cope with this issue, Talmon et al. proposed to use convolutive
transfer functions in the frequency domain in [10]. However, this
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approach is still based on approximating the channel effect, and its
performance cannot be exactly predicted from a theoretical point
of view. Alternatively, the problem of noise reduction can be di-
rectly investigated in the time domain as in [2,4,11]. The analysis
is then more rigorous since no approximation in some transforma-
tion domain is involved. However, the performance evaluation of
the filtering techniques, including the aforementioned ones, is
known to be of a challenge. This issue is addressed in this paper.

In this contribution, we introduce a new study of the time-
domain multichannel noise reduction. In contrast to earlier con-
ventional investigations, this study is based on the decomposition
of the noise-free observations into two orthogonal components:
the desired signal, which is fully coherent across the sensors and
some additive interference. This decomposition is optimal in the
second-order-statistics sense, and is, consequently, tailored to
many widely used filters, including the maximum signal-to-noise
ratio (SNR), MVDR, space–time (ST) prediction, LCMV, tradeoff,
and Wiener filters. By utilizing this decomposition, we determine
new expressions for these filters, and show that the time-domain
MVDR, Wiener, tradeoff, and maximum SNR filters are identical
up to a scaling factor. Finally, we carry out a simplified yet rigorous
performance analysis of all these filters in terms of noise reduction,
speech distortion, and output SNR. The concepts investigated in
this paper can be easily extended to the transform domains includ-
ing those mentioned above.

The remainder of this paper is organized as follows: Section 2
describes the signal propagation model. Section 3 outlines the sec-
ond-order-statistics-based decomposition of the multichannel
noise-free speech observations into two orthogonal components.
An explicit form of the time-domain steering vector is obtained. Sec-
tion 4 defines the objective performances metrics, namely the
speech distortion index, noise reduction factor, and output SNR.
These measures are perfectly tailored to the noise reduction for-
mulation in this contribution. Section 5 revisits optimal multichan-
nel noise reduction techniques and provides new expressions for
the maximum SNR, MVDR, ST prediction, LCMV, tradeoff, and Wie-
ner filters. Section 6 contains some simulation results that corrob-
orate our study. Finally, Section 7 concludes this work.

2. Signal model

We consider the typical formulation of signal model in which an
N-element microphone array captures a convolved source signal in
some noise field. The received signals, at the discrete-time index k,
are expressed as [2,3,6,8]
ynðkÞ ¼ gnðkÞ � sðkÞ þ vnðkÞ ¼ xnðkÞ þ vnðkÞ; n ¼ 1;2; . . . ;N; ð1Þ
here gn(k) is the impulse response from the unknown speech source
s(k) location to the nth microphone, ⁄ stands for linear convolution,
and vn(k) is the additive noise at microphone n. We assume that the
signals xn(k) and vn(k) are uncorrelated and zero mean. By defini-
tion, xn(k) = gn(k)⁄s(k) is coherent across the array for
n = 1, 2, . . . , N. The noise signals vn(k) are typically either partially
coherent or non-coherent across the array. All signals are consid-
ered to be real, broadband, and to simplify the development and
analysis of the main ideas of this work, we further assume that they
are Gaussian. Note here that the signal model in (1) is general and
no particular transform will be used in the following. Thus, the re-
sults of this contribution can be easily extended to noise reduction
in transform domains.

By processing the data by blocks of L samples, the signal model
given in (1) can be put into a vector form as
ynðkÞ ¼ xnðkÞ þ vnðkÞ; n ¼ 1;2; . . . ;N; ð2Þ
where

ynðkÞ ¼ ynðkÞ ynðk� 1Þ � � � ynðk� Lþ 1Þ½ �T ; ð3Þ

is a vector of length L, superscript T denotes transpose of a vector or
a matrix, and xn(k) and vn(k) are defined in a similar way to yn(k). It
is more convenient to concatenate the N vectors yn(k) together as

yðkÞ ¼ yT
1ðkÞ yT

2ðkÞ � � � yT
NðkÞ

� �T ¼ xðkÞ þ vðkÞ; ð4Þ

where vectors x(k) and v(k) of length NL are defined in a similar way
to y(k). Since xn(k) and vn(k) are uncorrelated by assumption, the
correlation matrix (of size NL � NL) of the microphone signals is

Ry ¼ E½yðkÞyTðkÞ� ¼ Rx þ Rv ; ð5Þ

where E[�] denotes mathematical expectation, and Rx = E[x(k)xT(k)]
and Rv = E[v(k)vT(k)] are the correlation matrices of x(k) and v(k),
respectively.

With the above signal models, the objective of noise reduction
is to estimate any one of the signals xn(k) [2,4,8,11]. Without loss
of generality, we choose to estimate the speech signal received at
microphone 1, i.e., x1(k) in this paper. Our problem then may be
stated as follows [2]: given the N noisy signals yn(k), our aim is
to estimate x1(k) and minimize the contribution of the noise terms
vn(k) in the array output.

3. Linear array model

In our linear array model, we estimate the desired signal on a
sample basis from the corresponding observation signal vector of
length NL. At time k, the signal estimate is obtained as

x̂1ðkÞ ¼ hT yðkÞ; ð6Þ

where h is a finite-impulse-response (FIR) filter of length NL. The
linear model in (6) can be rewritten as

x̂1ðkÞ ¼ hT ½xðkÞ þ vðkÞ� ¼ xfðkÞ þ vrnðkÞ; ð7Þ

where xf(k) = hTx(k) is the filtered speech signal and vrn(k) = hTv(k)
is the residual noise. From (7), we see that x̂1ðkÞ depends on the vec-
tor x(k); however, our desired signal at time k is only x1(k) [not the
whole vector x(k)]. Therefore, we should decompose x(k) into two
orthogonal vectors: one corresponds to the desired signal at time
k and the other corresponds to the interference. Indeed, it is easy
to see that this decomposition is

xðkÞ ¼ x1ðkÞcx þ x0ðkÞ ¼ xdðkÞ þ x0ðkÞ; ð8Þ

where xd(k) = x1(k)cx is the desired signal vector (of length NL), x0(k)
is the interference signal vector (of length NL),

cx ¼ cT
x1

cT
x2
� � � cT

xN

� �T ð9Þ

is the normalized [with respect to x1(k)] cross-correlation vector (of
length NL) between x1(k) and x(k),

cxn
¼ cxn ;0 cxn ;1 cxn ;L�1

� �T ¼ E½x1ðkÞxnðkÞ�
E x2

1ðkÞ
� � ; n ¼ 1;2; . . . ;N

ð10Þ

is the normalized cross-correlation vector (of length L) between
x1(k) and xn(k),

cxn ;l ¼
E½x1ðkÞxnðk� lÞ�

E x2
1ðkÞ

� � ; l ¼ 0;1; . . . ; L� 1 ð11Þ

is the normalized cross-correlation coefficient between x1(k) and
xn(k � l), and

x0ðkÞ ¼ xðkÞ � x1ðkÞcx; ð12Þ
E½x1ðkÞx0ðkÞ� ¼ 0: ð13Þ

Substituting (8) into (7), we get

x̂1ðkÞ ¼ hT ½x1ðkÞcx þ x0ðkÞ þ vðkÞ�;¼ xfdðkÞ þ x0riðkÞ þ v rnðkÞ; ð14Þ
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