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Different  social  processes  give  rise to  network  structures  with  distinctive  properties.  In  this  paper  our  goal
is  to  identify  the  social  processes  that give  rise  to  distinct  network  structures  (specifically,  subgroups).
We  examine  particular  structural  meta-relations  by identifying  the properties  of  individuals  associated
with  specific  subgroups.  Clues  to  the  process  of  group  formation  and the  context  in which  these  groups
form  and  persist  may  be extracted  from  the properties  of  individuals  in  those  groups.  Following  this
intuition,  we  propose  a general  technique  for identifying  systematic  patterns  of  attribute  occupancy
to  determine  how  individual  attributes  may  drive  group  formation.  To  connect  the  social  context  in
which  groups  form  to their  structural  signatures,  we relate  subgroup  composition  to  nodal  attributes.
We  illustrate  the  utility  of comparing  subgroup  (e.g.,  clique,  n-clique,  k-core,  etc.) co-membership  with
nodal  co-membership  in  a variety  of  attributes.  The  correlations  between  these  two  co-membership
matrices  illustrate  clearly  the  strength  of association  between  shared  attributes  and  shared  subgraph
membership.  Furthermore,  examining  these  correlations  across  groups  of  different  sizes indicates  where
these  attributes  are  most  strongly  associated  with  group  co-membership.  Additionally,  these  correlations
fit well  into  a QAP  framework  to determine  where  shared  subgraph  membership  has  a stronger  (or
weaker)  relation  to  shared  attribute  membership  than  we would  expect  by  chance.  We  demonstrate  the
technique  with  a series  of large,  online  friendship  networks  on  the  order  of  thousands  of nodes  to illustrate
how  factors  such  as  gender,  cohort,  residence,  and  other attributes  are  associated  with  co-membership
across  a range  of clique  sizes.

Published  by Elsevier  B.V.

1. Determinants of network structure

Observed networks represent the structural influence of count-
less social processes, including homophily (McPherson et al., 2001;
Newman, 2002), propinquity (Bossard, 1932; Brakman et al., 1999;
Festinger et al., 1950), preferential attachment (Price and de Sola,
1976; Barabási and Albert, 1999), disassortative mixing (Johnson
et al., 2010; Newman, 2002, 2003), and many others. These pro-
cesses rarely occur in isolation, as they typically act in tandem to
shape the web of relations represented by the network. Disentan-
gling this multitude of social processes in networks has been an
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ongoing topic of interest in the field and is a particular challenge
for characterizing large graphs.

While networks may  be driven by a large number of compet-
ing social processes acting at multiple scales (Contractor et al.,
2006), many of the early structural theories focused largely on the
determinants of lower-order properties of graphs and/or processes
arising in small group settings. Among the earliest theories in social
network analysis are balance theory (Cartwright and Harary, 1956;
Heider, 1958; Newcomb, 1953; Davis, 1967), theories of triadic clo-
sure or transitivity (Holland and Leinhardt, 1971; Davis, 1967), and
theories of reciprocity (Bronfenbrenner, 1943; Katz and Powell,
1955). These theories reflect where the field and its data origi-
nated. That is, they tend to focus on relatively simple, homogeneous
rules that govern processes that were originally observed in rela-
tively small networks in which all members could be aware of and
interact with one another (i.e., fewer than one hundred nodes or
so). Several of the earliest studies of networks came from stud-
ies of small groups in psychology (Moreno, 1934), communication
(Bavelas, 1950; Newcomb, 1953; Leavitt, 1951), and anthropology
(Barnes, 1954; Mitchell, 1974), as well as other relatively small,
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homogeneous, well bounded groups (Coleman et al., 1957). Reflect-
ing the field’s origins, these theories explain well the processes
driving tie formation in relatively homogeneous networks with few
restrictions on mutual awareness and potential interaction. As net-
works grow in size from tens to hundreds to thousands of nodes
and beyond, however, we struggle to glean insight into the net-
work’s structure with lower-order properties such as transitivity
and reciprocity.

Measures based on those lower-order network properties have
long served an important function in the analysis of networks. Tri-
adic closure, degree distribution, and network centralization, for
example, have long aided in exploratory, data analytic characteri-
zations of networks. Such analyses are essential to obtain a general
understanding of a graph’s structure or properties, often in support
of generating hypotheses about the drivers of the social phenomena
underlying that graph’s structure. These types of exploratory anal-
yses play a role as vital precursors to classical hypothesis-testing
methods such as brokerage scores (Gould and Fernandez, 1989),
quadratic assignment procedure (Hubert and Arabie, 1989), condi-
tional uniform graph tests (Anderson et al., 1999), and more recent,
model-based hypothesis-testing methods such as exponential-
family random graph models (Robins et al., 2007; Hunter et al.,
2008), stochastic actor-oriented models (Snijders, 2001, 2017;
Snijders et al., 2010), and relational event models (Butts, 2008).
This paper follows in the tradition of using exploratory analysis to
characterize network structure. However, we aim to develop an
approach that provides insight into the structure of large graphs,
where lower-order properties struggle to provide useful insight and
where coping with heterogeneity becomes increasingly important.

With the increasing availability of large-scale network data
(i.e. on the order of thousands, tens of thousands, hundreds of
thousands of nodes, or beyond), the field has increasingly begun
to grapple with the theoretical and methodological challenges of
working with large-scale networks representing relations such
as friendships on Facebook, citations among academic publica-
tions, co-authorship collaborations, emails exchanged within large
companies, and physical proximity measured via sensors. Large
graphs are more structurally complex and have more interdepen-
dent “moving parts,” which complicates the process of identifying
individual forces driving tie formation. Describing local struc-
tural configurations and testing traditional network theories have
been ongoing challenges in these kinds of networks. For example,
methodological innovations by Willer et al. (2012) were motivated
by a lack of techniques that could test network exchange theo-
ries in networks larger than twelve. In another example, Leskovec
et al. (2008) found that models based solely on theories of pref-
erential attachment are inadequate to reproduce the community
structure observed in large networks (on the order of tens of thou-
sands to millions of nodes) such as online social networks, email
communication networks, and citation networks. These examples
serve as cautionary tales that large networks are particularly diffi-
cult to analyze because their structure may  be driven by a variety
of co-occurring processes. Harnessing classical theories to explain
the structure of large-scale networks is an ongoing challenge in the
field and one that forces us to determine how to disentangle the
many processes that drive the formation of such networks. Describ-
ing local structure in large networks is another ongoing challenge,
which some have addressed using network motifs, recurring sub-
graphs that typically range in size from two to five. Milo et al.
(2002, 2004) have used these motifs to characterize local struc-
ture in worldwide web networks, language networks, networks of
positive sentiment among prison inmates, and friendship relations
among college freshmen. Because large graphs reflect a wide vari-
ety of social processes, the field has adapted its approach to using
traditional theories and for identifying local structure. In this paper
we continue following this approach of adapting how we utilize

classical theories to explain network structure by using Feld’s focus
theory to motivate a family of techniques that identifies factors
associated with the determinants of group co-membership within
networks.

2. Identifying sites of group formation

We  build on Scott Feld’s focus theory in order to identify the
factors driving subgroup formation. Feld (1981) argues that indi-
viduals organize their relations around foci, sources of joint activity
such as voluntary organizations, workplaces, and neighborhoods.
Individuals in these shared spaces are more likely to interact and
subsequently form ties with each other. These foci serve as nucle-
ation sites, spaces where ties develop and become reinforced. Feld’s
focus theory scales to large networks, as Feld describes how larger
populations typically have larger numbers of foci. Because mem-
bers of the population have bounded rationality (Slovic et al., 1974)
and cannot put forth the effort to be simultaneously involved in all
foci, these foci tend to occur at specific socio/demographic/spatial
“locales” in the population (i.e., within Blau space – see McPherson,
1983), such as workplaces, neighborhoods, and voluntary associa-
tions. Individuals utilize a limited number of foci and these foci
drive relationship formation in specific parts of the population. To
identify the determinants of tie formation in subgraphs, we  build
on this concept of shared features as sites for tie formation.

Large networks typically represent a conglomeration of social
processes, although these processes do not necessarily operate
homogeneously throughout the network. Rather, different social
processes often operate on different scales. Some nucleation sites
for tie formation are constrained to very specific, local scales: for
example, living in the same neighborhood. Other processes, such
as tie formation driven by gender or racial homophily, permeate
throughout society. Some nucleation sites give rise to large, dense
groups while others create much smaller groups. For example,
communication ties among individuals co-residing in a household
form subgroups that look quite distinct from subgroups of com-
munication ties of co-workers in a multifaceted organization with
hundreds of employees. In this paper we look for signals of dif-
ferent social processes based on the scale of these subgroups. We
do this by using shared attributes to examine the composition of
subgroups across different sizes. Shared attributes among individ-
uals in a subgraph may  lend insight into the nucleation site or sites
that have contributed to the formation of ties among them. This
notion of different mechanisms or mixing patterns giving rise to
distinct substructures with differential frequency goes back several
decades in the social network literature (Frank and Strauss, 1986;
Davis, 1979; Holland and Leinhardt, 1976), but scalable exploratory
methods capable of linking such substructures with particular foci
are still poorly developed. Identifying the characteristics of indi-
viduals composing these subgraphs will help to uncover the forces
that shape these networks.

3. Linking group membership to shared attributes

To identify which foci are associated with group formation
we introduce a general family of techniques for relating group
co-membership to shared attributes. We define “group” here gener-
ically to be any class of structural subgroup such as cohesive
subgroup (clique, n-clique, or k-core, etc.) as appropriate for the
social process of interest. Having chosen a subgroup definition, we
then identify co-membership in these subgroups. We  track sub-
group co-membership across all observed subgroup sizes, as the
forces driving subgraph formation may  vary across the range of
subgroup sizes. For example, the factors driving co-membership
in maximal cliques of size 4 may  differ from factors driving co-
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