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Data  collection  designs  for social  network  studies  frequently  involve  asking  both  parties  to a potential
relationship  to report  on the  presence  of absence  of that  relationship,  resulting  in  two  measurements
per  potential  tie.  When  inferring  the  underlying  network,  is  it better  to  estimate  the  tie as  present  only
when  both  parties  report  it as  present  or do so  when  either  reports  it?  Employing  several  data  sets  in
which  network  structure  can  be well-determined  from  large  numbers  of informant  reports,  we  examine
the  performance  of  these  two simple  rules.  Our  analysis  shows  better  results  for  mutual  assent  across
all data  sets  examined.  A  theoretical  analysis  of  estimator  performance  shows  that  the  best  rule depends
on both  underlying  error  rates  and  the  sparsity  of the  underlying  network,  with  sparsity  driving  the
superiority  of mutual  assent  in  typical  social  network  settings.
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Network inference is the problem of inferring an unknown
graph from a set of error and/or missingness-prone observations.
This problem is of fundamental importance in the study of social
networks, where relationships between individuals, organizations,
or other entities must typically be inferred from self or proxy
reports, archival materials, or other imperfect source of infor-
mation. Arguably, the most basic and familiar example of the
network inference problem arises when attempting to integrate
self-reports from subjects, each of whom is asked to identify all
others with whom he or she has a particular relationship (or, in
the case of a directed relationship, all others to/from whom he or
she respectively sends and/or receives ties). Such data has been
widely collected (see, e.g. Drabek et al., 1981; Reitz and White,
1989; Bernard et al., 1984; Killworth and Bernard, 1979; Pattison
et al., 2000), and poses a basic challenge for the analyst: given two
reports on the state of a given relationship, what is to be done when
the subjects disagree? Krackhardt (1987) famously formalized two
basic strategies for the analysis of such data (leading to respective
estimators of the underlying network): regard an edge as present if
either party reports it (the union rule); or regard an edge as present
if and only if both parties report it (the intersection rule). While one
or another rule has in some cases been argued to be preferred on
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substantive grounds, there has been little systematic investigation
of how the rules perform on empirical data, and in particular on the
relative performance of these rules in inferring network structure
under realistic conditions.

This paper seeks to address this gap, employing interper-
sonal networks whose complete structures can be well-estimated
through hierarchical Bayesian models (Butts, 2003) to assess the
accuracy of these simpler (but more easily used) rules. Our findings
demonstrate that the intersection rule (“mutual assent”) generally
outperforms the union rule (“unilateral nomination”) for the net-
works studied here - a surprising result, given that our informants
are not prone to making one particular type of error over another.
We  resolve this discrepancy by showing that the sparsity of the
network is key to the performance of the two rules, with the inter-
section rule dominating the union rule for networks in which the
opportunities for false positives greatly outweigh the opportunities
for false negatives.

1. Background

Social network analysis is intrinsically and trivially dependent
on the ability to accurately measure the structure of social relation-
ships. Despite the rise of network measurement via online social
networks, mobile devices, and other sources of observational data,
collection of self-reports via sociometric surveys continues to be a
popular method for network measurement in a wide range of set-
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tings. At least since the seminal studies of Bernard, Killworth, and
Sailer – who provocatively (if hyperbolically) concluded that “there
is no evidence that people know who their network connections
are” (Bernard et al., 1984) – error from informant observations has
been known to be a major challenge in network data collection and
subsequent inference. Though subsequent studies (e.g. Freeman
et al., 1987; Romney and Faust, 1982) have tempered the extremity
of Bernard et al.’s conclusion, it is clear that error rates are substan-
tial enough to warrant concern for social network research. With
self-report (i.e. informants reporting on their own ties) remaining
a popular method of network data collection, there is an ongo-
ing need for simple methods that can maximize the accuracy of
networks inferred from this type of information.

Although highly accurate estimates of network structure can be
obtained when many measures of each potential tie are available
(e.g., from cognitive social structure data – see Butts, 2003), simple
self-report designs allow only two observations per edge variable
(one for each party involved in the potential edge). The question,
then, is how best to integrate these reports to infer the underlying
network. Although many techniques are possible, we  here focus
on simple, easily used methods of aggregation that (1) estimate
the state of an edge variable as being consistent with informants’
reports where they agree, and (2) resolve disagreements via a sim-
ple uniform rule. Such strategies lead to estimators1 referred to by
Krackhardt (1987) as locally aggregated structures (LAS), the union
and intersection rules (U-LAS, I-LAS) being the special cases men-
tioned above. LAS estimators can be employed for both undirected
relations (when both parties report on the presence/absence of a
single undirected edge) and directed relations (when both parties
report on their incoming/outgoing ties); indeed, many networks
collected in the former manner are erroneously treated as directed,
where a LAS or other estimator of an underlying directed relation
should be employed. The present work is thus applicable to any sit-
uation in which we obtain edge observations associated with both
potential endpoints.

1.1. Formal framework

To formalize the above, our network inference problem may  be
summarized as follows. Let G = (V, E) represent an unknown net-
work of interest, with fixed and known vertex set V and unknown
edge set E. Without loss of generality, we will represent G via its
adjacency matrix, �;  where G is undirected, � is constrained to
be symmetric. Here, we assume the vertex set to be fixed and the
edge set unknown. Informant reports are represented via an infor-
mant by sender by receiver adjacency array, Y, such that Yijk = 1 if i
reports that the edge from j to k is present (with 0 otherwise). In our
setting, we assume that informants report only on their own ties,
and hence only Yiij and Yjij (and their reciprocating edge variables)
are employed. The locally aggregated structure (LAS) introduced by
Krackhardt (1987) has been a popular network inference tool for
aggregating an ego’s and alter’s judgments from such data. While
this has traditionally been explored through cognitive social struc-
tures (which collect an informant’s perception of the entire social
structure), the only responses needed from an informant are the
ties they report sending out and the ties they perceive others send
to them. In terms of the above, the union and intersection LAS
estimators are defined as follows:

�̂Uij = 1 − (1 − Yiij)(1 − Yjij) (1)

�̂Iij = YiijYjij (2)

1 Krackhardt (1987) does not explicitly treat the LAS as a family of estimators per
se, but employs them in a manner consistent with this interpretation.

As noted above, �̂U estimates an edge as being present when
either party reports it, while �̂I does so only when both parties
agree. Both rules are simple and easily understood, but may lead to
very different estimates of network structure. If one must employ
either �̂U or �̂I , which should one use? To determine this, we
consider the accuracy of each estimator under realistic conditions.

2. LAS accuracy: some basic theory

It is not immediately clear which LAS method would provide a
more accurate estimate of the unknown graph. If informants uni-
formly make more false positive errors (reporting that an edge
exists when it does not) relative to their false negative rate (report-
ing that an edge does not exist when it does) in their edge
observations, then it would seem that the Intersection LAS would
obtain an estimated graph close to the unknown graph. Conversely,
if informants make a greater number of false negative errors rela-
tive to the false positive rate, then the Union LAS would be expected
to provide a closer estimate to the unknown graph. This intuition
follows from the response of the respective rules to informant error
rates on a per-edge basis. Define the false positive and false negative
error rates for an arbitrary informant i by
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= Pr(Yiij = 1|�ij = 0) = Pr(Yiji = 1|�ji = 0)

e−
i

= Pr(Yiij = 0|�ij = 1) = Pr(Yiji = 0|�ji = 1),

with e = (e+, e−) being the full set of error rates. Assuming that errors
occur independently, it then immediately follows that the per-edge
error rates for �̂I and �̂U are given by
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where error rates are approximately equal across informants, �̂I

false positive rates scale with the square of the individual false posi-
tive rates, with the same holding mutatis mutandis for �̂U and false
negative rates; while this can result in substantial suppression for
these types of errors, errors of the opposite type (false negatives for
�̂I , false positives for �̂U) are correspondingly magnified. This is
illustrated graphically in Fig. 1, which shows the “worst case” prob-
abilities of a correct inference as a function of informant accuracy
(with both informants assumed to have the same error rates). In
the plausible setting for which e− > e+ – i.e., omission of true ties,
due e.g. to forgetting, is more common than fabrication or confab-
ulation of nonexistent ties – this analysis suggests that �̂U should
be more accurate than �̂I (perhaps by a large margin).

There is, however, another aspect to this problem. Consider the
expected total (Hamming) errors for �̂I and �̂U given the true
graph state:
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where D  is the set of potential edges. As a simplifying assump-
tion, let us take all informants to have the same error rates (hence
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