
Social Networks 54 (2018) 209–227

Contents lists available at ScienceDirect

Social  Networks

journa l homepage: www.e lsev ier .com/ locate /socnet

Detecting  node  propensity  changes  in  the  dynamic  degree  corrected
stochastic  block  model

Lisha  Yu a,∗,  William  H.  Woodall b, Kwok-Leung  Tsui a

a Department of System Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong
b Department of Statistics, Virginia Tech, Blacksburg, VA, USA

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 23 May  2017
Received in revised form 12 March 2018
Accepted 17 March 2018

Keywords:
Dynamic networks
Multivariate control charts
Network surveillance
Statistical process monitoring

a  b  s  t  r  a  c  t

Many  applications  involve  dynamic  networks  for  which  a sequence  of snapshots  of  network  structure
is available  over  time.  Studying  the evolution  of  node  propensity  over  time  can  be  important  in explor-
ing and  analyzing  these  networks.  In  this  paper,  we  propose  a multivariate  surveillance  plan  to monitor
node  propensity  in the dynamic  degree  corrected  stochastic  block  model.  The  method  is flexible  enough
to  detect  anomalous  nodes  that arise  from  different  mechanisms,  including  individual  change,  individ-
uals  switch,  and  global  change.  Experiments  on  simulated  and  case  study  social  network  data  streams
demonstrate  that  our surveillance  strategy  can  efficiently  detect  node  propensity  changes  in  dynamic
networks.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Social networks consist of interactions between connected indi-
viduals or organizations often involving relationships such as
communication, friendship or collaboration. With the rapid devel-
opment of the Internet, social networks such as Facebook and
Twitter form large dynamic networks. As dynamic social networks
are constantly undergoing changes, analyzing these networks is
crucial to understanding their structure and behavior. Our focus is
on the detection of changes in individuals’ propensities to commu-
nicate within a network that has community structure.

Monitoring to detect anomalous behavior within dynamic net-
works is known as network surveillance. The main tasks in network
surveillance are to detect change-points in time at which a subset of
the network deviates from normal behavior, and to identify the par-
ticular parts of the network that are responsible for the change. A
considerable amount of research specifically designed for anomaly
detection in the dynamic network environment has been proposed.
Methods have been successfully applied to a number of domains,
including fraud detection (Akoglu et al., 2010; Hassanzadeh et al.,
2012), threat detection (Eberle et al., 2010; Chen et al., 2011),
review spam detection (Jindal et al., 2010; Fire et al., 2012), financial
trade fraud detection (Li et al., 2012) and auction fraud detection
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(Chau et al., 2006). An overview of methods was given in recent
review papers by Savage et al. (2014), Ranshous et al. (2015), Bindu
and Thilagam (2016) and Woodall et al. (2017).

Social network surveillance for anomaly detection has attracted
much recent attention. It is a relatively new research area as pointed
out by McCulloh and Carley (2011), Savage et al. (2014) and Woodall
et al. (2017). The social network surveillance literature seems to
have been developed somewhat independently of the computer
network surveillance literature. The structure of social network
data is different from that of other types of networks and the
objectives of monitoring are typically different. The goal of social
network surveillance is to prospectively monitor the interactions
among individuals so as to detect the unexpected behavior of a
particular individual or detect sudden changes in the behavior of
groups of individuals. A general framework for guiding social net-
work surveillance is statistical process monitoring (Wilson et al.,
2017). The philosophy behind statistical process monitoring is to
distinguish between common-cause variation that is attributable
to a relatively stable underlying process, and special-cause varia-
tion that is unusual for the underlying process. In general, statistical
process monitoring provides a methodology for the real-time mon-
itoring of any characteristic of interest.

Some centrality metrics have been proposed to evaluate node
importance. A common approach is to monitor these extracted
metrics through time. As an example, McCulloh and Carley (2011)
constructed control charts based on different network centrality
measures. In the work of Priebe et al. (2005), Marchette (2012)
and Neil et al. (2013), scan-based network monitoring schemes
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Fig. 1. Flowchart for generating dynamic DCSBM.

were proposed. Similarly, Park et al. (2013) used a fusion of net-
work statistics to detect changes in a stream of networks. By taking
advantage of node attributes, Azarnoush et al. (2016) modeled the
probability of edge existence as a function of node attributes and
applied likelihood ratio methods to detect changes arising from
different network edge formation mechanisms.

Simulated social networks are required to evaluate fully the
performance of a proposed method instead of solely applying it
to a well-studied network that perhaps best fits the criteria of the
method itself (Savage et al., 2014; Woodall et al., 2017; Zhao, 2017).
This is required to understand how and when a particular method
performs well. Motivated by this, Wilson et al. (2017) proposed
the use of the degree-corrected stochastic block model (DCSBM)
of Karrer and Newman (2011) to model and monitor dynamic net-
works that undergo a significant change. We  note that the DCSBM
is a generalization of the stochastic block model of Nowicki and
Snijders (2001). The DCSBM provides a probability distribution
for undirected graphs with Poisson-distributed edge weights. The
DCSBM specifies the propensity of connection between nodes and
captures two important aspects of social networks, heterogeneous
connectivity and community structure. The use of the dynamic
DCSBM proposed in Wilson et al. (2017) provides a means to model
and monitor a social network to detect certain types of change.

Different structural changes can be introduced into the dynamic
DCSBM. Individuals could change their behavior over time. For
example, one faculty member in an academic department may
significantly increase his interaction with other faculty members
before a promotion to the role of department head. In this example,
the change of interaction will affect that member’s propensity to
communicate. Wilson et al. (2017) focused on modeling and detect-
ing only increases in the variation of the propensity to communicate
for nodes from the same community. Their approach can not be
used to detect changes of the propensity for particular nodes. In
addition, in their model, they chose the parameter that quantifies
the individual propensity as a random variable. At each time step, a
different propensity value was generated for each individual. Moti-
vated by the limitations of their approach, we put our focus on node
propensity change detection in dynamic social networks using the
DCSBM.

We  propose a method to detect quickly node propensity changes
over time based on the dynamic DCSBM. The following three types
of node propensity changes are considered: (i) change of an individ-
ual’s propensity; (ii) switch between two individuals’ propensities;
and (iii) change of variability of propensity. The node propensity
values in each community of the DCSBM are represented as a multi-
variate vector that contains estimated individual node propensities
as its components. Various multivariate statistical process moni-
toring methods can be applied for monitoring these vectors. We
propose to monitor for anomalous nodes in each community using

the compositional T2 control chart. A joint monitoring scheme at
the community level is then proposed. With this approach, the
number of statistics we monitor depends on the number of com-
munities instead of the number of nodes in the network.

The remainder of this paper is organized as follows. In the next
section, we  define the DCSBM, followed by a detailed explanation of
the proposed method in Section 3. In Section 4 we present a numer-
ical study to investigate the performance of the proposed method
as well as case studies on the MIT  Reality Mining personal mobility
dataset and the well-studied Enron email network to illustrate the
method. Finally, in Section 5 we give some concluding remarks and
directions for future work.

2. The degree corrected stochastic block model

2.1. The model

In many applications, nodes can be naturally divided into dif-
ferent communities. The block model is a widely used model for
networks with communities (Holland et al., 1983; Nowicki and
Snijders, 2001). Consider an undirected graph G = (V, E), where V
is the set of n nodes and E is the set of weighted edges. The net-
work can be mathematically represented by its adjacency matrix,
an n × n symmetric matrix A =

[
Aij

]
, where Aij is equal to the weight

of the edge between node i and j when i /= j. Since self-loops are not
allowed, the adjacency matrix has zeros on its diagonal. Let a rep-
resent the number of communities, and c = (c1, . . .,  cn) contains
the community labels where ci is the community corresponding to
node i. To handle variation in the degree distribution, each node
i is also assigned an additional propensity parameter �i, i =1,. . .,
n, which reflects the propensity of the node to connect. Follow-
ing the DCSBM introduced in Karrer and Newman (2011), the edge
variables Aij are independent Poisson random variables with mean
�i�jPCiCj where P is a a × a symmetric matrix which contains the
propensity of connection between nodes in communities ci and cj ,
i.e.,

Aij∼Poisson (�i�jPCiCj ) (1)

Sometimes, we call �i the “degree parameter” associated with node
i, reflecting its individual propensity to form ties.

The parameters � =
(
�1, . . .,  �n

)
are arbitrary to within a mul-

tiplicative constant which is absorbed into the P parameters. Thus
identification requires constraints, and convenient ones force the
�i values to sum to 1 within each community, i.e.,∑
i:Ci=r

�i = 1 (2)
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