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a  b  s  t  r  a  c  t

The  purpose  was  to assess  RDS  estimators  in populations  simulated  with  diverse  connectivity  charac-
teristics,  incorporating  the  putative  influence  of  misreported  degrees  and  transmission  processes.  Four
populations  were  simulated  using  different  random  graph  models.  Each  population  was  “infected”  using
four different  transmission  processes.  From  each  combination  of  population  x  transmission,  one  thou-
sand  samples  were  obtained  using  a RDS-like  sampling  strategy.  Three  estimators  were  used  to  predict
the  population-level  prevalence  of  the “infection”.  Several  types  of misreported  degrees  were  simulated.
Also,  samples  were  generated  using  the standard  random  sampling  method  and  the  respective  preva-
lence  estimates,  using  the  classical  frequentist  estimator.  Estimation  biases  in relation  to  population
parameters  were  assessed,  as  well  as the  variance.  Variability  was  associated  with  the  connectivity  char-
acteristics of  each  simulated  population.  Clustered  populations  yield  greater  variability  and  no  RDS-based
strategy  could  address  the estimation  biases.  Misreporting  degrees  had  modest  effects,  especially  when
RDS  estimators  were  used.  The  best  results  for RDS-based  samples  were  observed  when  the  “infection”
was  randomly  attributed,  without  any  relation  with  the  underlying  network  structure.

© 2017  Published  by  Elsevier  B.V.

1. Introduction

Most hard-to-reach populations are marginalized, stigmatized
and−depending on mores and laws−may  be criminalized. Men  who
have sex with men  (MSM), drug users, migrants belonging to eth-
nic/linguistic/religious minorities, people living with HIV/AIDS are
some examples of these populations. Even when their members
are relatively numerous in a given setting (for instance, neighbor-
hoods where migrants from a given ethnicity cluster), it is difficult
or rather impossible to use traditional sampling methods to assess
them (Johnston et al., 2016; Montealegre et al., 2012a).

Such populations/groups are not easily identifiable, tend to con-
ceal their status to protect them from actual or perceived prejudice
and to avoid interactions with institutions and/or people who may
be viewed as sources of additional difficulties and stigma (but
see Montealegre et al., 2012b; respecting successfully HIV testing
strategies for undocumented immigrant in Houston, Texas, USA,

∗ Corresponding author at: Rua Ferreira de Andrade, 583-202, Rio de Janeiro, RJ
20780-200, Brazil.

E-mail address: ssperandei@gmail.com (S. Sperandei).

despite relevant differential rates according to education, country
of origin, etc.).

Low frequencies of a given characteristic behavior and/or geo-
graphic dispersal worsens the problem because even if individuals
may  be candid and prone to reveal their status and habits, a large
sample size and complex, costly logistics would be required to find a
reasonable number of individuals (Heckathorn, 1997; Salganik and
Heckathorn, 2004). Examples of such difficulties (having as a key
consequence the violation of basic assumptions of random selec-
tion, an essential feature of any unbiased sampling strategy) have
been documented by studies targeting rural populations, even in
high-income countries (e.g., USA) where good transportation and
sound infrastructure partially alleviate such hurdles and caveats
(Young et al., 2014).

Currently, one of the most popular sampling technique used to
assess hard-to-reach populations is respondent-driven sampling
(RDS) (Heckathorn, 1997). Since the late 1990′s, its application have
mushroomed and it has already proven to be efficient in finding
members of several hard-to-reach populations. The recommenda-
tion and adoption of RDS by major agencies such as the Centers
for the Disease Control and Prevention (CDC) (Lansky et al., 2007)
and the World Health Organization (WHO) (Johnston et al., 2013)
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have fostered its acceptance and widespread use (Salganik and
Heckathorn, 2004).

However, although RDS is able to recruit members from a hard-
to-reach population, estimates based on RDS studies remain a
matter of concern and debate. Clearly, RDS is a chain-referral, non-
probabilistic, sampling method, similar to snowballing (Goodman,
1961; Heckathorn, 2011), and prevalence estimates based on RDS
data may  be biased (Goel and Salganik, 2010). As a chain-referral
method, sampling results are intrinsically dependent on the under-
lying network structure of the population under analysis, as well as
on several other factors, such as the differential recruitment of spe-
cific subgroups, geographic heterogeneities, structural bottlenecks
secondary to violence or lack of transportation, less-than-optimal
bridging between different segments etc. (see, for instance, Burt
and Thiede, 2014; Rudolph et al., 2015; Toledo et al., 2011).

The assessment of the accuracy and validity of RDS estimates
remains a challenge, since it is very difficult (or rather impossi-
ble) to know the actual contact network of each individual. Usually,
the reported number of contacts is used to weight the individual
information when calculating prevalence of a given characteristic
or medical condition (Gile et al., 2015; Goel and Salganik, 2010).

Since the actual contact network of each individual is unknown,
simulating connected populations seems to be a valid strategy to
evaluate assumptions which are key to the method, as well as their
putative violations when estimators are based on studies carried
out in real-life situations. Some studies have assessed the accuracy
and validity of standard estimators using simulated data, prof-
iting from actual information on degree distributions (Goel and
Salganik, 2010; McCreesh et al., 2012; Mills et al., 2014; Wejnert,
2009). However, one must be keep in mind that the number of con-
tacts in common between any two individuals is hard to assess or
is unknown, and there is little, if any, information about it. Even
assuming that information from two individuals about their total
number of contacts are precise, the extent such contacts may  over-
lap is usually hard or impossible to estimate in real-life conditions.

Another possible relevant source of estimation error from RDS
sampling is due to the dependency between the putative transmis-
sion of a given pathogen (or any other transmissible element) and
the underlying network structure of the population. For instance,
the transmission of some pathogens depend on close and prolonged
contact between infected and at-risk individuals (e.g., HIV/AIDS
and other sexually transmitted infections/diseases), whereas other
conditions are less dependent on the network structure and can
be transmitted even if individuals’ interaction is incidental, such
as in the spread of influenza virus via the shared use of public
transportation.

To the best of our knowledge, a single study has addressed the
impact of information error about the number of contacts on RDS
estimators. Mills et al. (2014) have shown information error may
determine relevant estimation biases on RDS studies.

In the present paper, we assessed RDS estimators’ performance
under varying conditions of network structure, misreporting
degrees, and transmission dependency.

2. Material and methods

2.1. Simulated populations

Four different populations (N = 10,000) were simulated, each
using a different approach based on different families of random
graph models: Erdös-Renyi (ER – Erdös and Rényi, 1959), Watts-
Strogatz (WS  – Watts and Strogatz, 1998), Barabasi-Albert (BA –
Barabasi and Albert, 1999) and Interconnected Islands (II). For the
sake of the present study, only static network have been consid-

ered. Some information about the connectivity characteristics of
each model used is provided as follows:

• Erdös-Renyi (ER): the connection between two individuals is
established in a completely random fashion and any two indi-
viduals will be connected with a fixed probability. The only
parameter needed is the probability (P) of a link between two
individuals, set at 0.001;

• Watts-Strogatz (WS): starting from a regular ring lattice, an indi-
vidual will be linked to a fixed number of neighbors at each side.
Here, we set this parameter to five neighbors to each side. Then,
each link has a certain probability to be broken and reattached
to any other individual in the population, creating “shortcuts”
between groups of individuals, which was set at 0.1 in our model.
This model is usually known as the small-word model;

• Barabasi-Albert (BA): known as the preferential attachment
model, this model starts with one individual and adds other indi-
viduals, one by one. Each entering individual will be preferentially
attached to individuals with a higher number of contacts (usu-
ally mentioned as a “rich get richer” attachment strategy). The
parameter to this model is the number of connections each new
member of the population will add when created and was set at
five in the simulation;

• Interconected-Islands (II): the original population is initially split
into a number of subpopulations (five, in our simulations). Within
each subpopulation, the connectivity is determined as in the ER
model and a random set of individuals in each subpopulation is
chosen connecting individuals from other subpopulations. In our
simulation, we set five connecting individuals, which represents
a highly clustered population. The third parameter needed is the
probability of a random connection between individuals, as in the
ER model before and was set at 0.005.

All model parameters were set to obtain a mean degree of 10
connections, irrespectively of the model used.

2.2. Disease transmission process

Each population was  challenged by four transmission processes,
all of them dependent on the underlying network connections. Dif-
ferent numbers of infection seedings (10, 100, 500, and 1500 seeds)
were randomly selected and launched to transmit the condition
(to “infect”) to their contacts. Following a Susceptible-Infected (SI)
model (which does not consider recovery as a plausible outcome),
and taking HIV/AIDS as our key example, infection was spread in
the population step by step. In each step, an individual connected
to an infected contact had a probability of 0.05 to become infected.
The infection process follows until a theoretical prevalence of
∼15% “infected” individuals, which is defined here as a theoret-
ical  ̈ ceiling value”. Clearly, the greater the number of infection
seedings, the lesser the dependency between infection dynamic
and network connections (i.e., infections spread by a huge num-
ber of infection seedings could not be distinguished from a simple
“mass effect” dissemination process, where the underlying net-
work structure is not taken into consideration). In our simulation,
the ceiling value was  a 1,500 seeds infectious process, where no
relationship between the condition and the underlying network of
contacts was  made evident, and the infection can be approximately
described as “randomly assigned” (data not shown). Information
about individual degree was purposely “biased” in several ways, to
simulate different types of misreported degree. Besides “no bias”,
i.e., a hypothetically perfectly accurate degree information, which
corresponds to actual population data, we  defined the alternatives
as follows: “random misreporting”, where the degree information
was extracted from normally distributed data, with coefficients of
variation either equal to 0.2 or 0.6; and, “systematic misreporting”,
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