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In  this  paper  we propose  a new  method  for  studying  local  and global  clustering  in networks  employing
random  walk  pairs.  The  method  is  intuitive  and  directly  generalizes  standard  local  and  global  clustering
coefficients  to  weighted  networks  and networks  containing  nodes  of multiple  types.  In  the  case  of two-
mode  networks  the  values  obtained  for commonly  considered  social  networks  are  in sharp  contrast
to  those  obtained,  for instance,  by the  method  of  Opsahl  (2013), and  provide  a different  viewpoint  for
clustering.  The  approach  is  also  applicable  in  questions  related  to the  general  study  of  segregation  and
homophily.  Applications  to  existent  data  sets are  considered.
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1. Introduction

In this paper we propose a new method for studying local and
global clustering in networks employing random walk pairs. The
method is intuitive and directly generalizes standard local and
global clustering coefficients to two-mode networks (as well as
weighted networks and networks containing nodes of multiple
types).

One often considered local property of social networks is that of
triadic closure (within the ego network of an individual). In particu-
lar, suppose an individual v has kv neighbors, and hence kv(kv − 1)/2
distinct pairs of neighbors. A standard measure is the local cluster-
ing coefficient, Cv, which is the proportion of these pairs who are
themselves connected (see Watts and Strogatz, 1998), i.e.

Cv = number of pairs of neighbors of v that are connected

number of pairs of neighbors of v
.

(1)

Consider a network represented as an undirected graph, G = (V,
E), with a set of n vertices or nodes, V = {v1, v2, . . .,  vn}, and a set of
connections or edges, E. Averaging Cv over all nodes v then leads to
a measure, CG, of global clustering (see Watts and Strogatz, 1998)
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CG = 1
n

∑
v ∈ V

Cv. (2)

Akin to (1), an alternative measure of global clustering (Newman
et al., 2001) is given by

C∗
G = number of paths of length 2 in G that are closed

number of paths of length 2 in G
, (3)

where a path of length two is a triple (u, v, w) ∈ V3 satisfying
{(u, v), (v, w)} ⊆ E, and such a path is closed when, in addition,
(u, w)  ∈ E. Barrat et al. (2004) and Opsahl and Panzarasa (2009)
extended Cv and C∗

G to weighted graphs by incorporating weights
of triangles in (1) and (3), respectively (see also Saramäki et al.,
2007 and the references therein).

The study of closure in the neighborhood of an individual is
motivated by considerations of tension and cohesiveness from
the perspective of the individual. Triplets of nodes (triads; see
Simmel and Wolff, 1950) – and sentiments, connections, and inter-
actions between members – have been a topic of interest for several
decades. For discussion of social capital derived for members based
on existent strong or weak connections (or lack thereof) see for
instance Granovetter (1973), Burt (1992) and Coleman (1988). Con-
sonance in triads, and implications for the network as a whole, has
been considered through aspects of cognitive and structural bal-
ance (see Heider, 1946; Cartwright and Harary, 1956; Holland and
Leinhardt, 1971). For discussion of the influence of social contexts
on triadic closure, see for instance Feld (1981) and Kossinets and
Watts (2009), and the references therein.

Rather than simply considering connections between neighbors
of a node v ∈ V , one might, more generally, be interested in the
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Fig. 1. A simple five-node network.

proximity of neighbors (of an individual) to each other in the graph.
Instead of a binary perspective of connection, one might naturally
consider how far apart two randomly chosen neighbors of a partic-
ular node are.

Specifically, consider a particular node v ∈ V and uniformly and
independently select two neighbors of v, say W1 and W2 (note that
W1 and W2 may  be equal). A quantity of interest is then the expected
value of dG(W1, W2), where for two nodes x and y, dG(x, y) denotes
the shortest path distance between x and y. Note that, here dG(W1,
W2) is either 0 (if W1 = W2), 1 (if W1 and W2 are neighbors), or 2
(since v is a common neighbor).

Thus, for v ∈ V define �v via

�v = �v(G)
def= E(dG(W1, W2)), (4)

where E represents expected value. The value of �v is bounded
between zero and two and is readily interpreted as giving mean-
ingful information regarding clustering near the node of interest.
For fixed degree, the exact value is a function of the number of con-
nections among neighbors of v (as is Cv in (1)). In particular, setting
Y = dG(W1, W2), k = kv and letting e = ev be the number of pairs of
connected neighbors of v, i.e.

e = ev = |{(u1, u2) ∈ V × V : {(u1, u2), (v, u1), (v, u2)} ⊆ E}|, (5)

we have the probabilities P(Y = 0) = 1/k, P(Y = 1) = e/k2 and
P(Y = 2) = 1 − (e + k)/k2. Hence

�v = E(Y) = e

k2
+ 2(k2 − (e + k))

k2

= 2k(k − 1) − e

k2
.

(6)

Consider the following simple example.

Example 1. Fig. 1 gives a simple network with five nodes. For
the central node v, we have P(Y = 0) = 1/4, P(Y = 1) = 4/16, P(Y =
2) = 1/2, and the expected distance between two  uniformly and
independently selected neighbors W1 and W2 of v is given by
�v = 1.25. Corresponding values for the other nodes are (�1, �2,
�3, �4) = (0, 1/2, 8/9, 1/2).

Referring to Eq. (6), �v is monotone in e for fixed k. Hence, insert-
ing the extreme values of zero and k(k − 1) for e in (6), leads to the
following simple result.

Lemma  1. Suppose node v has degree kv in the graph G, and for any
positive integer x, define m(x) = (x − 1)/x and M(x) = 2(x  − 1)/x. Then

m(kv) ≤ �v ≤ M(kv), (7)

and the lower and upper bounds in (7) are best possible.

Considering Lemma  1, one potential normalization of the quan-
tity �v is the “min–max scaling” of �v (see for instance Jain et al.,
2005; Aksoy and Haralick, 2001), i.e.

�∗
v
def= �v − m(kv)
M(kv) − m(kv)

. (8)

It follows easily that 0 ≤ �∗
v ≤ 1 for v ∈ V . There is a, perhaps sur-

prising, simple equivalence between the normalized distance in (8)
and the standard clustering coefficient, as in (1).

Theorem 1. Suppose v ∈ V . Then

Cv = 1 − �∗
v . (9)

Proof. Writing k = kv, and inserting the values for m(k) and M(k)
in (7) gives

�∗
v = 2k(k − 1) − e − k(k − 1)

k(k − 1)

= 1 − e

k(k − 1)
= 1 − Cv.

(10)

�

Akin to (2), we  can define the global value �G via

�G
def= 1
n

∑
v ∈ V

�v. (11)

The value of �G can then be interpreted as the expected distance
between two  randomly chosen neighbors of a randomly chosen
node from V.

For discussion of some further concepts related to the cluster-
ing coefficients Cv, such as redundancy, efficiency, and effective
size, see for instance Latora et al. (2013) and the references
therein.

The intuitive sense of �v in (4) and Theorem 1 suggest general-
ization to other scenarios. The main benefits of the approach taken
here center on coverage of clustering in a wide variety of contexts
(binary one-mode, weighted one-mode, two-mode, and more gen-
erally any undirected network wherein a particular subset of nodes
is of interest), and the natural and inherent emphasis on “stronger”
ties and network exploration, resulting from the employment of
random walks (see, in particular discussion surrounding Fig. 4 in
Section 2 and Figs. 8 and 9 in Section 3). To our knowledge this
is the first approach directly applicable in all the above scenar-
ios.

The remainder of the paper proceeds as follows. In Sections
2 and 3, we  consider local clustering in weighted networks and
networks with varying node attributes (including two-mode net-
works), respectively. Section 4 contains some discussion regarding
computational aspects and Section 5 concludes with applications
to existent data sets. An appendix is included, which deals with
some technicalities from Section 3 regarding two-mode networks.

2. Weighted networks

Generalization of clustering coefficients to graphs endowed
with a weight function on edges has been considered by several
authors (see for instance Saramäki et al., 2007; Phan et al., 2013).
The process leading to the definition of �v in (4) above extends nat-
urally to such graphs, with similar connections to existing methods
(see Theorem 2).

Assume that G = (V, ω) is an undirected weighted graph, with a
set of vertices V, and a symmetric weight function ω from V × V to
the non-negative reals, R

+. Such graphs arise in many ecological,
social, physical and economic studies where the weights can rep-
resent varying tie strength, intensity or capacity (see for instance
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