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a  b  s  t  r  a  c  t

The  exponential  random  graph  model  (ERGM)  is  a  well-established  statistical  approach  to modelling
social  network  data.  However,  Monte  Carlo  estimation  of  ERGM  parameters  is  a  computationally  inten-
sive  procedure  that  imposes  severe  limits  on the  size  of  full  networks  that  can  be  fitted.  We  demonstrate
the  use  of snowball  sampling  and  conditional  estimation  to  estimate  ERGM  parameters  for large  networks,
with the  specific  goal  of studying  the  validity  of  inference  about  the  presence  of  such  effects  as  network
closure  and  attribute  homophily.  We  estimate  parameters  for snowball  samples  from  the  network  in  par-
allel, and  combine  the  estimates  with  a meta-analysis  procedure.  We  assess  the  accuracy  of  this  method
by  applying  it to simulated  networks  with  known  parameters,  and  also  demonstrate  its  application  to
networks  that  are  too large  (over  40  000 nodes)  to  estimate  social  circuit  and  other  more  advanced
ERGM  specifications  directly.  We  conclude  that  this  approach  offers  reliable  inference  for  closure  and
homophily.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Exponential random graph models (ERGMs), first introduced
by Frank and Strauss (1986), are a class of statistical model that
are useful for modelling social networks (Lusher et al., 2013). Since
their introduction, a body of work has been developed around
ERGM theory and practice, including the introduction of new
specifications for modelling social networks (e.g., Snijders et al.,
2006; Robins et al., 2007; Goodreau, 2007), and more sophisticated
methods for estimating ERGM parameters (e.g., Snijders, 2002;
Handcock et al., 2008; Wang et al., 2009; Caimo and Friel, 2011;
Hummel et al., 2012). Originally, the most common method for
estimating ERGM parameters was maximum pseudo-likelihood
(Strauss and Ikeda, 1990). More recently, Markov chain Monte
Carlo maximum likelihood estimation (MCMCMLE) (Corander
et al., 1998, 2002; Snijders, 2002; Hunter and Handcock, 2006) has
become the preferred method (Robins et al., 2007). These tech-
niques have several advantages over maximum pseudo-likelihood:
if the estimation does not converge, a degenerate model is likely
(a situation that maximum pseudo-likelihood does not indicate);
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converged estimates can be used to produce distributions of graphs
in which the observed graph is typical for all effects in the model;
reliable standard errors for the estimates are obtained (Robins et al.,
2007); and point estimates are more accurate (Snijders, 2002).

Such MCMCMLE  techniques require the generation of a distri-
bution of random graphs by a stochastic simulation process. This
process, which requires a number of iterations to “burn in” the
Markov chain, as well as a large number of iterations to generate
samples that are not too auto-correlated, is computationally inten-
sive, and scales (at least) quadratically in the number of nodes in
the network. This limits the size of networks to which an ERGM can
be fitted in a practical time. Furthermore, this process is inherently
sequential (although several chains can be run in parallel, they each
must be burned in), which limits the ability to take advantage of the
parallel computing power available in modern high performance
computing resources.

In this paper, we show how to fit ERGMs to certain large
networks where model fitting using standard MCMC  procedures
would be impractical or impossible. The key idea takes advantage of
recent developments in conditional estimation for ERGMs (Pattison
et al., 2013) to take multiple snowball samples, estimate ERGM
parameters for each sample in parallel, and combine the results
with meta-analysis.

To the best of our knowledge, the work of Xu et al. (2013)
is the first to take a similar approach. Xu et al. use a special
data-intensive supercomputer to estimate an ERGM for a Twitter
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“unfollow” network with over 200 000 nodes, estimating each of
nearly 400 samples in parallel (by running statnet (Handcock et al.,
2008) independently on each sample), and combining the results
with meta-analysis (Snijders and Baerveldt, 2003). However, as
Pattison et al. (2013) show, simply estimating the parameters
of snowball samples without taking account of the snowball
sampling structure, and assuming they are estimates of the full
network, can lead to quite incorrect estimates. The issue is that, for
a large class of models, standard parameter estimates for a graph
are dependent on the number of nodes N and do not scale up in
a consistent manner as N increases (Rolls et al., 2013; Shalizi and
Rinaldo, 2013). Further, the Xu et al. (2013) method is applied only
to the single Twitter unfollow network, for which the true values
are not known, so there can be no comparison of true and esti-
mated parameters, and therefore the reliability of the parameters
obtained from their meta-analysis could not be assessed.

The motivations for fitting ERGMs to data are several. Usu-
ally, the aim is to infer whether certain well-established network
processes that lead to tie creation are consistent with the data,
and to parse apart different processes that might be operating
simultaneously. This can be done by parameterizing competing
explanatory processes and then inferring which of these are sig-
nificant (Lusher et al., 2013). But, further, with precise parameter
estimates, simulation of the model results in a distribution of
graphs that can be interpreted as consistent with the data (at least
in regards to the fitted effects). This distribution can be treated as
the range of plausible graphs in a population of networks, from
which a number of conclusions may  be drawn. For instance, the
population might relate to school classrooms or to communities of
drug users (Rolls et al., 2013).

With very large data, however, the second motivation is often
of less concern, because the idea of a “population” of large data is
not always coherent. (There is for instance only one world wide
web, not a population.) In this case, the interest is more typically
on understanding the network processes within the data, such as
closure and homophily. In this article, then, we are most interested
in the validity of statistical inference for our procedure and hence
we focus on type I and type II errors in our results.

2. Exponential random graph models

Under a homogeneity assumption whereby parameters are
equated for all structurally identical subgraphs, an ERGM is a prob-
ability distribution with the general form

Pr(X = x) = 1
�

exp

(∑
A

�AzA(x)

)
(1)

where

• X = [Xij] is a 0-1 matrix of random tie variables,
• x is a realization of X,
• A is a configuration, a (small) set of nodes and a subset of ties

between them,
• zA(x) is the network statistic for configuration A,
• �A is a model parameter corresponding to configuration A,
• � is a normalizing constant to ensure a proper distribution.

In the present work we will be using only undirected graphs, so
the matrix X is symmetric. Assumptions about which ties are inde-
pendent, and therefore the configurations A allowed in the model,
determine the class of model.

In the simplest case, where all tie variables are assumed to
be independent, the ERGM reduces to a Bernoulli random graph
distribution, otherwise known as a simple random graph or
Erdős-Renyi random graph (Gilbert, 1959). In such a model only

one configuration is used, an edge between two nodes, with the
network statistic zL(x), the number of edges in the network, and
the corresponding parameter �L.

The Markov dependence assumption, that two tie variables are
conditionally independent unless they have a node in common,
leads to the class of Markov random graphs (Frank and Strauss,
1986). In such models, the subgraph configurations include stars
(in which a node has ties to two  or more other nodes) and triangles
(three mutually connected nodes). Stars can be further categorized
as 2-stars, a subset of three nodes in which one node is connected
to each of the other two, 3-stars, a subset of four nodes in which
one node is connected to each of the other three, and so on, in gen-
eral giving k-stars. Note that configurations are nested inside each
other, for example a triangle contains three 2-stars. Associated with
these is the alternating k-star statistic (Snijders et al., 2006), which
is a weighted sum of the number of k-stars from k = 2 to k = N − 1
(where N is the number of nodes), with the sign alternating:

zAS =
N−1∑
k=2

(−1)k Sk

�k−2
(2)

where Sk is the number of k-stars and � ≥ 1 is a damping parameter
which reduces the impact of higher order stars as it is increased.
The alternating star parameter provides modelling flexibility in fit-
ting node degree distributions, and alleviates model degeneracy.
Throughout we  use � = 2, as suggested by Snijders et al. (2006) and
modelling experience.

A more general class of model is based on social circuit
dependence (Snijders et al., 2006; Robins et al., 2007) and often
parameterized with higher order parameters such as the alternat-
ing k-triangle and alternating k-two-path (or alternating two-path)
statistics. A k-triangle is a combination of k individual triangles
which all share one edge, useful for modelling transitivity in the
network. The alternating k-triangle statistic was defined in Snijders
et al. (2006), and can be expressed as:

zAT = 3T1 +
N−3∑
k=1

(−1)k Tk+1

�k
(3)

where Tk is the number of k-triangles. Again, we set the damping
parameter to be � = 2 throughout.

The k-two-path configuration is the number of distinct paths of
length two between a pair of nodes, equivalent to the k-triangle
configuration without the common (or “base”) edge. Analogous to
the alternating k-star and alternating k-triangle statistics, the alter-
nating k-two-path statistic was  defined in Snijders et al. (2006), and
can be expressed as:

zA2P = P1 − 2P2

�
+

N−2∑
k=3

(−1
�

)k−1
Pk (4)

where Pk is the number of k-two-paths. We use � = 2 throughout.
These configurations are illustrated in Fig. 1. Software to fit and

simulate ERGMs using these configurations includes PNet (Wang
et al., 2009) and statnet (Handcock et al., 2008).

The alternating k-triangle and alternating k-two-path statis-
tics can also be expressed in terms of edgewise and dyadic
shared partners as the “geometrically weighted edgewise shared
partner” (GWESP) and “geometrically weighted dyadic shared
partner” (GWDSP) statistics, respectively (Hunter, 2007). The stat-
net software package (Handcock et al., 2008) uses GWESP and
GWDSP rather than alternating k-triangle and alternating k-two-
path statistics by default (Hunter, 2007).

All the configurations discussed so far have been structural,
without the consideration of nodal attributes. In addition we wish
to consider how an attribute (covariate) on a node can affect the
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