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Longitudinal  binary  relational  data  can  be  better  understood  by  implementing  a  latent  space model  for
dynamic  networks.  This  approach  can  be  broadly  extended  to  many  types  of  weighted  edges by  using  a
link function  to model  the  mean  of the  dyads,  or by employing  a  similar  strategy  via  data  augmentation.
To  demonstrate  this,  we  propose  models  for count  dyads  and for non-negative  real  dyads,  analyzing
simulated  data  and  also  both  mobile  phone  data  and world  export/import  data.  The  model  parameters
and  latent  actors’  trajectories,  estimated  by  Markov  chain  Monte  Carlo  algorithms,  provide  insight  into
the network  dynamics.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Representing relational data by networks is extremely useful
and widely implemented. The dyadic relations which compose
these networks are viewed as a set of actors and a set of edges
between the actors. The edges can vary in many ways, such as
being directed or undirected, static or temporal, binary or weighted.
Binary networks, where between each actor an edge either does
or does not exist, are encountered more often in the literature,
although many such networks are by nature weighted. Weighted
networks, also referred to as valued networks, consist of actors
connected by edges which can take more than two values. By
accounting for the weight, or strength, of the edges, the richness
of the data can be better exploited. Examples of analyses of real
world weighted networks include food webs (Krause et al., 2003),
gene expression data (Zhang and Horvath, 2005), airline networks
(Barrat et al., 2005), mobile phone networks (Onnela et al., 2007),
and many more.

Often in binary networks it is of interest to compute vari-
ous network measures, and recently there has been increasing
work in extending these measures to weighted networks. Opsahl
et al. (2010) derived for weighted networks measures for degree,
closeness, and betweenness. Yang and Knoke (2001) derived a
method for computing path length in the case of weighted edges.
Opsahl and Panzarasa (2009) developed a method for analyzing the
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clustering that exists within a network with weighted edges. Other
interesting works include Kunegis et al. (2009), which analyzed the
case where edges took values in { − 1, 0, 1}, and Newman (2004),
which showed how to model networks whose edges are counts
by representing them as multigraphs. To fully model the network,
Krivitsky (2012) extended the commonly used exponential ran-
dom graph model (ERGM) to account for networks whose dyads are
counts; Krivitsky and Butts (2012) extended the ERGM to account
for networks whose dyads are rankings.

Network data are most often inherently dynamic, even though it
is frequently the case that the data are simply aggregated over time
into one static network. Many popular static networks have been
extended to longitudinal network data. Examples of this include the
temporal exponential random graph model developed by Hanneke
et al. (2010) and the separable temporal exponential graph model
by Krivitsky and Handcock (2014), the mixed membership stochas-
tic blockmodel for dynamic networks by Xing et al. (2010), and the
latent space model for dynamic networks by several authors includ-
ing Sarkar and Moore (2005), Sewell and Chen (2015b), Morgan
(2014) and Durante and Dunson (2014).

This paper is focused on network data that is dynamic, weighted,
and possibly directed. There are few resources available to the
researcher investigating such data. Most approaches in existence
focus on latent space models for dynamic undirected networks.
Latent space models assume the dependence of the network is
induced by a set of latent variables. Such approaches are typically
intuitive and have the advantage of producing meaningful visual-
izations, allowing the researcher to better understand the network
structure as well as the behavior of individual actors.

Sarkar et al. (2007) extended the CODE model of Globerson
et al. (2004) for dynamic undirected networks. This method is
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an approximate filtering algorithm which models the longitudi-
nal count networks, embedding the actors in a latent space. This
method is not easily generalizable to other sorts of co-occurrence
data besides counts, however, and cannot handle directed edges.
Hoff (2011) described a multilinear model for undirected longitu-
dinal networks. In this work, Hoff showed how to model undirected
edges or ranked edges, where each dyad is an element from a finite
ordered set, though it should be feasible to extend his approach to
other types of dyads. Sewell and Chen (2015a) developed a latent
space model for directed ranked dynamic networks, where each
actor ranks each other actor, although it is not obvious how to
extend this approach beyond this specific context.

The remainder of the paper is organized as follows. Section 2
extends the latent space model for dynamic networks with valued
edges. Section 3 gives a method of estimation. Section 4 describes
an approximation to reduce computational cost for large networks.
Section 5 gives simulation results. Section 6 gives the results for
analyzing a mobile phone network and world trade data. Section 7
provides a brief discussion.

2. Models

We  assume here that each actor exists within some latent space
which can be interpreted as a characteristic space, or a social space.
When actors are closer together in this latent space, the probability
of a stronger edge is increased (where a “stronger edge” means
a stronger relationship, though the actual form of this is context
specific).

We first introduce some general notation to be used throughout.
Assume we have a set of actors N  and a set of edges E. Let n = |N|
be the number of actors, and let Yt be the n × n adjacency matrix
of the observed network at time t whose entries yijt correspond to
the weight of the edge from actor i to actor j for t ∈ {1, 2, . . .,  T}. Let
Xit ∈ Rp be the position vector of the ith actor at time t within the
p dimensional latent space. Let Xt be the matrix whose ith row is
Xit. Finally, let � be the vector of unknown parameters (which will
vary depending on dyadic type).

As in Sarkar and Moore (2005) and Sewell and Chen (2015b), we
assume the latent actor positions transition according to a Markov
process, where the initial distribution is

�(X1|� ) =
n∏
i=1

N(Xi1|0, �2Ip), (1)

and the transition equation is

�(Xt |Xt−1, � ) =
n∏
i=1

N(Xit |Xi(t−1), �2Ip), (2)

for t = 2, 3, . . .,  T, where Ip is the p × p identity matrix, and N(x|�, �)
denotes the multivariate normal probability density function with
mean � and covariance matrix � evaluated at x. While this is the
latent dependence structure used throughout the remainder of the
paper, other dependence structures could be defined, such as the
latent path model given by Morgan (2014).

In most dynamic network models it is assumed that the
dependence structure of the network is fully induced by the latent
positions of the actors. This assumption, along with the Markovian
properties of the latent positions, leads to the state space temporal
dependence structure given in Fig. 1, as well as the conditional inde-
pendence of each dyad within a time period. The ranked networks
of the form analyzed by Krivitsky and Butts (2012) and Sewell and
Chen (2015a) are a counter example of where there is an extra
dependency constraint in the data, but we will not discuss further
these rare data types. What remains then is to derive an appropriate

Fig. 1. Illustration of the dependence structure for the latent space model. Yt is the
observed graph, Xt is the unobserved latent actor positions, and � is the vector of
model parameters.

conditional likelihood function, �(Y1, . . ., YT |X1, . . .,  XT , � ) =∏T
t=1

∏
i /= j

�(yijt |Xt , � ).

Most latent space approaches have the conditional likelihood
constructed by writing the logit of the edge probability as a lin-
ear form of covariates and a function of the latent variables, i.e.,
logit(�(yijt| ·)) = ˛′wijt + f�(Xit, Xjt), where  ̨ is a vector of unknown
parameters, wijt is a vector of dyad specific covariates, and f� :
Rp × Rp → R  is a function taking as its arguments two  actors’ latent
variables. Our generalization of this has the basic form

g(E(yijt)) = ˛′wijt + f� (Xit , Xjt), (3)

for some link function g. We  can utilize the same types of link func-
tions found in generalized linear mixed models. For example if our
dyads are in the form of continuous data, we may  set g to be the
identity; this may  arise in, for instance, proximity networks (see,
e.g., Olguın et al., 2009), where the distance between individuals is
recorded on a regular basis. The common case of modeling binary
dyads through the logit link function is yet another example. In Sec-
tion 2.1 we will go into detail for the context of count data, using a
log link function.

In some cases, however, the dyads cannot be modeled directly
through a link function as in (3). Instead we can introduce additional
latent variables, and then adopt a similar strategy. For example,
we may  consider a zero inflated model. The zero inflated model
is a two  component mixture model, where one could introduce
additional latent indicator variables which determine whether the
observation is coming from the component which is a point mass
at zero or the component that has some other density function �*

(e.g., �* is the Poisson density). We  could then model g(E�∗ (yijt))
as in (3). This situation may  arise in large sparse weighted network
data, such as company wide email count networks. Zero-inflated
models are certainly not the only possibility of this type of data
augmentation, as we  will see in Section 2.2.

For the remainder of the paper we  will focus on count data and
non-negative continuous edges. We  will furthermore utilize the
conditional likelihood given by Sewell and Chen (2015b), deter-
mined by

f� (Xit , Xjt) = ˇIN

(
1 − dijt

rj

)
+ ˇOUT

(
1 − dijt

ri

)
, (4)

where dijt =‖ Xit − Xjt ‖ is the distance between actors i and j at time
t within the latent space, and r = (r1, r2, . . .,  rn) is a vector of pos-
itive actor specific parameters constrained such that

∑n
i=1ri = 1

for model identifiability. For the remainder of the paper we will
also, for simplicity, ignore the covariate information ˛′wijt. It is
straightforward to reincorporate such information into the work
that follows.

Each ri can be thought of as the ith actor’s social reach. That
is, a larger value of ri implies that it is more likely for an edge,
either yi·t or y·it, to take a larger value. These ri’s also hold a geo-
metric interpretation within the latent space, specifically a radius.
For example, in the context of binary networks, this radius can be
understood to imply that actors inside of each other’s radii have a
greater than 1/2 probability of an edge, and actors outside of each
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