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a  b  s  t  r  a  c  t

In this  paper,  I introduce  new  methods  for multilevel  meta  network  analysis.  The  new  methods  can
combine  results  from  multiple  network  models,  assess  the effects  of  predictors  at network  or  higher levels
and  account  for  both  within-  and  cross-network  correlations  of  the  parameters  in  the  network  models.
To  demonstrate  the  new  methods,  I studied  network  dynamics  of  a smoking  prevention  intervention
that  was  implemented  in  76  classes  of  six  middle  schools  in  China.  The  results  show  that  as  compared  to
random  intervention  (i.e.,  that targets  random  students),  smokers’  popularity  was  significantly  reduced
in the  classes  with  network  interventions  (i.e., those  target  central  students  or students  with  their  friends
together).  The  findings  highlight  the  importance  of  examining  network  outcomes  in evaluating  social  and
health  interventions,  the role of  social  selection  in  managing  social  influence,  and  the  potential  of  using
network  methods  to  design  more  effective  interventions.
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1. Introduction

In a seminal paper, Snijders and Baerveldt (2003) describe meta-
analysis methods for combining results from multiple network
models. The methods consist of two steps. In the first step, a net-
work model (e.g., the Exponential Random Graph Model) is fitted
on multiple networks. In the second step, the estimated parame-
ters from the multiple networks are combined via meta analysis.
Such meta network analysis can not only provide inferences on the
population averages of the estimated parameters, but also test the
equality or joint significance of the estimated parameters across
the networks.

In light of the latest advances in meta analysis (e.g., Viechtbauer,
2010; White, 2011; Gasparrini et al., 2012), the methods docu-
mented in Snijders and Baerveldt (2003), however, may  be updated
from several aspects. First, the methods can be extended to incor-
porate network level and higher levels of predictors. This extension
essentially converts simple meta-analysis to multilevel meta-
regressions. The extension is important because it helps to provide
a more complete characterization of social and network processes.
If the network models in the first step account for network depend-
ence, including appropriate higher levels of predictors helps to
adjust for spatial dependence (e.g., area), larger group dependence
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without specific dependence structure (e.g., school), or differences
in other network characteristics (e.g., treatment status). This exten-
sion is particularly important, if the research interest is examining
the effects of network level or higher levels of predictors.

Second, the meta network analysis may  be extended to incor-
porate cross-network variations in the estimated parameters.
Previous meta network analysis, maybe except the Fisher’s method
for combining independent P-values (Snijders and Bosker, 2012;
Ripley et al., 2014), mostly assumes that the estimated parameters
for a particular variable in the network models are generated by
a common effect. This fixed effect assumption holds well when
the networks can be viewed as being sampled from the same
population. However, it may  not hold when there are important
characteristics that differ across networks and are unaccounted for
in the network models. In such cases, it may  be more appropriate
to assume that the estimated parameters for a variable come from
different underneath effects. For parsimonious reasons, however,
these different underneath effects can be assumed to come from the
same distribution. This new assumption leads to what is so-called
the random effects model. It can help to examine cross-network
variations in the estimated parameters in the network models.

Third, previous univariate meta network analysis may  be
extended to multivariate cases. First, the multivariate fixed effects
model can help to account for within-network correlations in
the estimated parameters. For example, active actors (i.e, those
nominate a lot friends) also tend to be popular actors (i.e, those
receive a lot friend nominations). Previous univariate meta net-
work analysis assumes such correlations are zero while in contrast,
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the multivariate fixed effects model utilizes the covariance matrix
of the estimated parameters in the network models to facilitate
estimating the underneath effects in the meta analysis. Extending
meta analysis to the multivariate cases is also important because
sometimes the estimated parameters in the network models may
be correlated across networks. This can result from, for example,
spillover effects of implemented interventions, etc. The multivari-
ate random effects model can help to account for cross-network
correlations in the estimated parameters in such cases.

In this paper, I introduce the latest advances in meta analysis
for multilevel network research and provide an overview of multi-
level meta regressions in both univariate and multivariate cases and
in both fixed effects and random effects models. To demonstrate
the new methods, I applied them to studying network dynamics of
a smoking prevention intervention that was implemented to stu-
dents from 76 classes of six middle schools in China. The 76 classes
were randomly assigned into one of four treatment conditions:
control condition in which no students received the intervention,
random intervention in which a quarter of students were randomly
selected to participate in the intervention, central intervention in
which a quarter of central students (i.e., those received a lot friend
nominations from their classmates) were selected to participate
in the intervention, and group intervention in which a quarter of
students and their close friends were selected to participate in
the intervention. The goal is to study whether network dynam-
ics related to smokers significantly differ between the random
intervention and the network interventions (i.e., both the central
intervention and the group intervention). More specifically, it is
hypothesized that smokers would become less popular in the net-
work interventions than in the random intervention, as the treated
students in the network interventions had more leverages to sever
their ties to smokers if they choose to do so.

During data analysis, first I fit a stochastic actor-oriented model
(SAOM) (Snijders, 2001; Steglich et al., 2010) on the friendship
network in each class in order to characterize the network dynam-
ics before and after the intervention. In the second step, I use
multilevel meta-regressions to examine the effects of network
interventions in contrast to the random intervention. The univari-
ate meta-regressions show that network interventions (including
both the central intervention and the group intervention) are
more effective than the random intervention in reducing smoker’s
popularity. Friendship ties directed to smokers in the network
intervention classes are only about half as likely to continue as
those in the random intervention classes. Results of the multilevel
multivariate regressions show similar patterns. But the evidence
is probably more robust for the central intervention than for the
group intervention. Overall, both the meta network analysis and
the substantive findings in this paper shed lights on future network
studies.

This paper proceeds as follows. In Section 2), I introduce the mul-
tilevel meta-regressions for meta network analysis. In Section 3,
I describe the data and the analytical strategies used to demon-
strate the multilevel meta network analysis. Section 4 presents the
empirical results. Last, I conclude.

2. Models for multilevel meta network analysis

2.1. Multilevel univariate meta-regressions

One approach to extending the univariate meta network analy-
sis is to specify a multilevel model that can include network level
(or even higher levels) of predictors. Incorporating these predictors
is important because it helps to account for special dependence in
the data that goes beyond network dependence. It is particularly
important if the research interest is assessing the effects of network

or high levels of predictors. More formally, this extension can be
expressed as follows:

�̂ki = �i + x′
kˇi + eki, (1)

where it is assumed that I estimated parameters are available from
each of K networks, �̂ki denotes the ith estimated parameter in the
kth network, �i a common effect (or population-average) for the ith
estimated parameter, xk a (p × 1) vector containing the p dimen-
sions of characteristics of the kth network, ˇi a (p × 1) vector of
coefficients reflecting the associations of the network characteris-
tics with the ith estimated parameter, and eki an error term with a
zero mean and a variance that equals the variance of the ith esti-
mated parameter �̂2

ki
. Assuming independence and normality of the

error terms, the model can also be expressed as:

�̂ki∼Normal(�i + x′
kˇi, �̂2

ki). (2)

In words, the ith estimated parameter in the kth network is
assumed to follow a Normal distribution with a mean of (�i + x′

k
ˇi)

and a variance of �̂2
ki

. Since the estimated parameters are assumed
to have been generated by a common effect, formulation (2) is often
called the fixed effects meta-regression. The statistical problem is
to estimate �i and ˇi with information on xk, �̂ki, and �̂2

ki
. Recall

that both �̂ki, and �̂2
ki

are assumed known from the network models
in the first step analysis.

Formulation (2) can be revised to account for the fact that the
underneath effect for each estimated parameter is not a fixed quan-
tity, but a random quantity that follows a hyper-distribution.

�̂ki∼Normal(�i + x′
kˇi, �̂2

ki), where �i∼Normal(�i, v2
i ) (3)

Or, in a compact way,

�̂ki∼Normal(�i + x′
kˇi, �̂2

ki + v2
i ), (4)

where �i is the mean of the underneath effects for the ith esti-
mated parameter and v2

i
measures the between-network variation

of the estimated parameter. Correspondingly, this model repre-
sents the random effects meta-regression. The statistical problem
is to estimate �i, ˇi , and v2

i
with information on xk, �̂ki, and �̂2

ki
.

2.2. Multilevel multivariate meta-regressions

Both the fixed effects and random effects models aforemen-
tioned can be extended to multivariate cases. Unlike the univariate
meta-regressions, multivariate meta-regressions do not assume
independence of the estimated parameters in each network. In the
multivariate fixed effects model, the estimated parameters in the
kth network are assumed to follow a multivariate normal distribu-
tion of dimension I (i.e., the number of shared parameters in the
network models).

�̂k∼NormalI (� + X ′
kˇ, ˙k), (5)

where �̂k represents a (I × 1) vector of the estimated parameters in
the kth network, � a (I × 1) vector containing the common effects for
the parameters in the network model, and Xk a (Ip × I) block matrix
derived from the Kronecker product of an identity matrix of dimen-
sion I and the characteristics of the kth network xk (Gasparrini et al.,
2012). The (Ip × 1) vector  ̌ represents the associations between the
network characteristics and the estimated parameters. Last, ˙k is
the (I × I) variance-covariance matrix of the estimated parameters
in the kth network. The statistical problem is to estimate �,  ̌ with
information on �̂k, Xk, and ˙k.

Sometimes the underneath effects � may  be correlated across
networks. In such cases, a multivariate random effects model may
be more appropriate.

�̂k∼NormalI (� + X ′
kˇ, ˙k), where �∼NormalI (�, ˝) (6)
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