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Discovery  of cohesive  subgraphs  is an  important  issue  in  social  network  analysis.  As  representative  cohe-
sive  subgraphs,  pseudo  cliques  have been  developed  by  relaxing  the  perfection  of  cliques.  By  enumerating
pseudo  clique  subgraphs,  we  can  find  some  structures  of  interest  such  as a star-like  structure.  However,
a  little  more  complicated  structures  such  as a core/periphery  structure  is  still  hard  to  be found  by  them.
Therefore,  we  propose  a novel  pseudo  clique  called  �-dense  core  and  show  the  connection  with  the  other
pseudo  cliques.  Moreover,  we  show that  a set of  �-dense  core  subgraphs  gives  an  optimal  solution  in  a
graph  partitioning  problem.  Several  experiments  on real-life  networks  demonstrated  the  effectiveness
for  cohesive  subgraph  discovery.
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1. Introduction

In recent years, much interest has been shown in analysis of
networks as a model of relationships between individuals, comput-
ers, Web  pages, and proteins, and so on. A network/graph consists
of nodes and edges in which a node represents an object and an
edge between two nodes represents a relationship between the
corresponding two objects. One aspect of interest in the analy-
sis of networks is to know what kinds of and how many cohesive
subgraphs exist in a given graph. Indeed, in many real networks,
cohesive subgraphs are connected to special functions/roles, and
their discovery is thus of great importance as follows.

(1) Community Mining:  The goal of community mining is to iden-
tify clusters of persons and to understand how one person
relates to another (Palla et al., 2005; Zhao et al., 2011). For
example, the relations of co-authorships among scientists are
modeled as a graph in which two coauthors are connected by an
edge. A group of scientists sharing similar interests may  publish
many coauthored papers and, as a result, form a cohesive sub-
graph. Reversibly speaking, by identifying cohesive subgraphs,
we may  identify groups of collaborative scientists and under-
stand how such a group influences other groups of scientists.

(2) Identification of influential social actors:  Influential social actors
can be found as cohesive subgraphs (Borgatti and Everett,
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2000; Chakrabarti, 2004; Batagelj and Zaveršnik, 2010) in a
graph of human interactions through emails, phone-calls, and
social media. For example, bloggers customarily post their
likes/dislikes on a Web  page as a sign of agreement. Such a
blogger network can be modeled as a graph in which a group
of influential bloggers may  form a cohesive subgraph.

(3) Query Indexing: Finding cohesive subgraphs in computer
networks and wireless networks helps to find landmark nodes
for calculating the approximated shortest distance between
two nodes (Cohen et al., 2003; Jin et al., 2009). We  may  choose
one cohesive subgraph to deploy a new landmark node on the
network.

The cohesiveness of a graph is typically measured by one of
three basic indices: (a) distance (number of edges of the shortest
path between two  nodes), (b) degree (numbers of edges a node
has) and (c) density (ratio of actual number of edges to possible
maximum number of edges). In any index, the perfect model of
cohesive subgraphs is a clique (Luce and Perry, 1949), in which the
distance between two nodes is always one (a), the degree is the
node set size minus one for every node (b), and the density is the
maximum of 100% (c). However, the perfection of cliques is too
rigid to use for finding cohesive subgraphs in many real networks,
and a number of pseudo cliques,  therefore, have been developed by
relaxing the strength of one of these indices. Such pseudo cliques
include n-clique (Luce, 1950), k-plex (Seidman and Foster, 1978),
k-core (Seidman, 1983) and �-dense (Goldberg, 1984), which were
proposed in the early stage of research. These pseudo cliques often
find a coarse subgraph and are too flexible to find cohesive sub-
graphs as will be explained later. In order to compromise between
overly restrictive cliques and overly relaxed pseudo cliques, other
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pseudo cliques have been proposed. An n-clan (Mokken, 1979) and
an n-club (Mokken, 1979) were proposed as intermediate concepts
between an n-clique and a clique. A k-truss (Saito and Yamada,
2006; Cohen, 2009; Wang et al., 2010) was proposed as a vari-
ant of k-core. These pseudo cliques are useful for finding cohesive
subgraphs, in terms of one of three indices, such as a star (Harary,
1994) and a rich club (Zhou and Mondragon, 2004). However, there
are still more cohesive subgraph of interest such as the core of
core/periphery structure (Borgatti and Everett, 2000). The structure
ideally consists of a clique (core) and peripheral nodes that connect
to all core nodes. In practice, the ideal definition is relaxed such that
the core is a sufficiently dense subgraph whose node are connected
by a short path, and have large degree (Borgatti and Everett, 2000;
Lee et al., 2014; Rombach et al., 2014). It is still difficult to find such
a highly cohesive core with existing pseudo cliques.

In this paper, therefore, we propose one more pseudo clique
called a �-dense core to find more kinds of structures of interest. A
subgraph is called �-dense core if it cannot be divided into sparsely
connected subgraphs; more specifically, no dichotomous division
produces two subgraphs with between-density less than �. The �-
dense core is cohesive in terms of all three indices and shares many
desirable properties with other pseudo cliques. A �-dense core sub-
graph is a subgraph of equally connected nodes up to the specified
density of �. At a small value of �, we can find a set of cores and
peripheries, and at a large value of �, we can find the cores. We
present two algorithms: one is an enumeration algorithm of all �-
dense core subgraphs in a given graph and the other is a partitioning
algorithm of the graph by �-dense core subgraphs. Although the
enumeration problem is NP-hard in general, the algorithm termi-
nates in a reasonable time even for problems of a medium size,
graphs with 300 nodes and 1000 or fewer edges in the experiment.

In addition, we discuss a hierarchical application of these algo-
rithms with increasing/decreasing the value of �.

The rest of paper is organized as follows. In the next section, we
briefly review the related works and show what kinds of structures
have been found so far. In Section 3, our problems are formally
described with notations to be used in this paper. We  propose �-
dense core and analyze its properties in Section 4. In Section 5, we
introduce two algorithms for enumerating �-dense cores and for
graph partitioning. In Section 6, we illustrate the effectiveness of
these algorithms on synthetic and real-life data sets. Discussion is
presented in Section 7, and the conclusion follows in Section 8.

2. Pseudo cliques

Extraction of cohesive subgraphs can be achieved either implic-
itly or explicitly. In the implicit approach, cohesive subgraphs are
found by dividing a graph into several subgraphs so as to maxi-
mize the density within each of the subgraphs and simultaneously
to minimize the density between the subgraphs. There are various
criteria for division including ratio cut (Hagen and Kahng, 1992),
normalized cut (Malik, 2000), modularity (Newman and Girvan,
2004; Newman, 2006), and many others (Schaeffer, 2007; Luxburg,
2007). These criteria often produce “well-balanced” cohesive sub-
graphs in terms of density, number of nodes and/or number of
edges. Other criteria such as Extraction (Zhao et al., 2011) and Graph-
Scan (Wang et al., 2008) are also used to find the most cohesive
subgraph in a given graph. They are often used for identification
of influential actors and for detection of anomalies. The implicit
approach is especially useful when we do not have in mind an
explicit structure to be extracted. Unfortunately, many of the crite-
ria suffer from a resolution limit (Fortunato and Barthélemy, 2007)
that implies a tendency that the subgraphs to be found become
larger as the entire graph becomes larger.

In the explicit approach, we define first what a desired graph is
and then find subgraphs having such desired properties. Typically,

this is achieved with an index showing how strongly a graph is
cohesive. We  enumerate (maximal) subgraphs that are sufficiently
cohesive in the index. The three basic indices of cohesiveness are
distance, degree and density: (a) distance is the number of edges
of the shortest path between two  nodes, (b) degree is the num-
ber of edges a node has, and (c) density is the ratio of the number
of edges to the maximum possible number of edges. In general, a
graph is more cohesive when every two  nodes have a shorter dis-
tance, every node has a larger degree, and the graph itself is denser.
The strongest model in all the three indices is a clique (Luce and
Perry, 1949): the distance is one, the degree of each node is the
node set size minus one, and the density is one. However, the con-
cept of a clique is too strong to use for finding cohesive subgraphs
in many real networks, and a number of pseudo cliques have there-
fore been developed by relaxing the perfection in these indices. An
n-clique (Luce, 1950) is developed by relaxing the distance. An n-
clique is a maximal subgraph in which the distance of two  nodes
is less than or equal to n (the path may  step out the subgraph). A
clique is a 1-clique since any two  nodes are connected by an edge.
If one edge is removed from a 1-clique, then it becomes a 2-clique.
A k-plex (Seidman and Foster, 1978) and a k-core (Seidman, 1983)
are obtained by relaxing the degree. A k-plex (Seidman and Foster,
1978) is a maximal subgraph in which a node is nonadjacent to
at most k nodes in the subgraph. As a complement model of the
k-plex, a k-core (Seidman, 1983) is a maximal subgraph in which
each node is adjacent to at least k nodes in the subgraph. For exam-
ple, a 4-node clique subgraph is a 3-core if no node of the clique is
linked to three or more nodes outside the clique. By relaxing the
density, �-dense (Abello et al., 2002) is developed. A connected sub-
graph is a �-dense if the density is greater than �. Hence, a 1-dense
(rather 100%-dense) subgraph is a clique. In this paper, we focus
on the implicit approach because our main concern is extraction of
subgraphs with special structures of interest.

One problem of these pseudo cliques is that they are too relaxed
from cliques so that they find subgraphs with excessively coarse
structures. For example, being an n-clique (n > 1) does not mean
that the subgraph is connected, because the definition allows that
two separated components of the subgraph are connected through
a single outside node. In order to compromise between overly
restrictive cliques and overly relaxed pseudo cliques, many vari-
ants have been proposed. An n-clan (Mokken, 1979) and an n-club
(Mokken, 1979) were proposed as intermediate concepts between
an n-clique and a clique. They adopt another measure of distance,
diameter, i.e., maximum distance over all pairs of nodes. An n-club is
a maximal subgraph with diameter n. An n-clan is an n-clique (Luce,
1950) with diameter n, so that every n-clan is an n-club. The n-
club and n-clan are always connected if n ≥ 1. As a stronger variant
of k-core, k-truss (Cohen, 2009) (also known as k-dense (Saito and
Yamada, 2006), or Dense Neighborhood graph (Wang et al., 2010))
is introduced. A k-truss is a maximal subgraph in which any pair of
nodes have at least k − 2 common neighbors (nodes linked to the
node by an edge). For example, a 4-node clique subgraph is a 4-truss
subgraph if it is maximal in the set of subgraphs sharing the same
property. A remarkable nature of a k-truss is that enumeration of
all k-truss subgraphs needs only a polynomial time in the number
of nodes. Each of the previously proposed pseudo cliques is useful
for finding a special type of cohesive subgraphs such as a maximal
clique,  a star (Harary, 1994), and a rich club (Zhou and Mondragon,
2004). For example, maximal clique subgraphs that have diame-
ter one and density one can be found with distance-based pseudo
cliques such as n-clan and density-based pseudo cliques such as
�-dense. Similarly, a star consisting of a “hub node” and many sur-
rounding nodes can be found with distance-based pseudo cliques
such as n-clan. A rich club consisting of a “hub set” of nodes sur-
rounded by many peripheral nodes can be found with degree-based
pseudo cliques such as k-core. Finding of the hub set is carried out
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