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a b s t r a c t 

Motivated by the promising performance of alternative estimation methods for mixed logit 

models, in this paper we derive, implement, and test minorization-maximization (MM) al- 

gorithms to estimate the semiparametric logit-mixed logit (LML) and mixture-of-normals 

multinomial logit (MON-MNL) models. In particular, we show that the reported compu- 

tational efficiency of the MM algorithm is actually lost for large choice sets. Because the 

logit link that represents the parameter space in LML is intrinsically treated as a large 

choice set, the MM algorithm for LML actually becomes unfeasible to use in practice. 

We thus propose a faster MM algorithm that revisits a simple step-size correction. In a 

Monte Carlo study, we compare the maximum simulated likelihood estimator (MSLE) with 

the algorithms that we derive to estimate LML and MON-MNL models. Whereas in LML es- 

timation alternative algorithms are computationally uncompetitive with MSLE, the faster- 

MM algorithm appears emulous in MON-MNL estimation. Both algorithms – faster-MM 

and MSLE – could recover parameters as well as standard errors at a similar precision in 

both models. We further show that parallel computation could reduce estimation time of 

faster-MM by 45% to 80%. Even though faster-MM could not surpass MSLE with analytical 

gradient (because MSLE also leveraged similar computational gains), parallel faster-MM is 

a competitive replacement to MSLE for MON-MNL that obviates computation of complex 

analytical gradients, which is a very attractive feature to integrate it into a flexible estima- 

tion software. We also compare different algorithms in an empirical application to estimate 

consumer’s willingness to adopt electric motorcycles in Solo, Indonesia. The results of the 

empirical application are consistent with those of the Monte Carlo study. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Background 

With the increase in computation power during the last decade, the mixed multinomial logit (MMNL) model – a random 

parameter logit model with parametric and continuous heterogeneity distributions – is the most commonly used flexible 
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discrete-choice specification ( Train, 2009; McFadden and Train, 20 0 0 ). The problem of correctly specifying the heterogene- 

ity (or mixing) distribution of the random parameters has received great attention ( Hensher and Greene, 2003 ); however, 

there is still no consensus among researchers: restricting the shape of the mixing distributions can result into wrong signs 

and overestimation of welfare measures. Wrong (welfare) estimates can misguide policy and marketing decisions ( Fosgerau, 

20 06; Cherchi and Polak, 20 05 ). To overcome the problem of presuming the shape of the mixing distribution, differing 

specifications with semi- or nonparametric mixing distributions have been proposed. Vij and Krueger (2017) and Bhat and 

Lavieri (2017) provide a detailed review of advancements in parametric and semiparametric mixing distributions under 

extreme-value-distributed (logit kernel) and normally-distributed (probit kernel) error structures. In general, estimation of 

these flexible 1 models is complex and computationally expensive. 

This study focuses on estimation of two state-of-the-art semiparametric logit models, namely the logit-mixed-logit (LML) 

and mixture-of-normals multinomial logit (MON-MNL) models, especially in the context of the promising performance of 

an alternative iterative optimization method with minimal coding, the minorization-maximization algorithm that will be 

introduced below, as reported for mixed logit ( James, 2017 ). 

The logit-mixed-logit model ( Train, 2016 ) generalizes many previous semiparametric models including Bajari et al. (2007) , 

Fosgerau and Bierlaire (2007) , Train (2008) , and Fox et al. (2011) (cf. Bhat, 1997 ). In LML, a finite parameter space is divided 

into a discrete multidimensional grid (cf. Train, 2008 ). Whereas Train (2008) considers the probability mass at each discrete 

point as a parameter of interest, LML reduces the number of parameters by specifying this probability using a logit link. 

In Monte Carlo studies, Bansal et al. (2018a) and Franceschinis et al. (2017) successfully tested flexibility of LML as the 

model could retrieve a series of continuous parametric mixing distributions (bi-modal, tri-modal, lognormal, and uniform) 

much better than parametric counterparts. The maximum simulated likelihood estimator (MSLE) of LML is much faster 

than that of parametric models, but computation of standard errors requires bootstrapping. Furthermore, the computational 

efficiency of point estimation is lost by a factor of 15 to 30 when fixed parameters are introduced ( Bansal et al., 2018b ), and 

computational efficiency becomes much worse when standard errors are derived. 

The mixture-of-normals multinomial logit also offers a flexible representation of unobserved preference heterogeneity. 

The premise of MON-MNL 2 is that any continuous distribution can be approximated to a given degree of accuracy by a 

discrete mixture of normals ( Ferguson, 1973 ). Prespecifying the number of mixture components (or classes 3 ) imposes a het- 

erogeneity structure, but unlike LML there is no need of predefining the parameter space. Resource-intensive bootstrapping 

to compute standard errors is not needed in MON-MNL either. In a Monte Carlo study, Fosgerau and Hess (2009) found that 

MON-MNL outperformed parametric specifications in all scenarios, ranging from retrieving the most trivial uniform distribu- 

tion to the most complex multimodal distribution. Keane and Wasi (2013) further supported the superiority of MON-MNL in 

an extensive study of 10 stated preference datasets. However, only a handful of empirical studies have used MON-MNL, pos- 

sibly due to the complexity of the analytical gradient of the loglikelihood and covergence problems when using numerical 

gradients. For instance, Fosgerau and Hess (2009) pointed out that MSLE led into troubles for more than 2 normal compo- 

nents in the mixing distribution. Whereas Keane and Wasi (2013) did not explicitly mention any such estimation problem, 

the authors set bounds on some parameters and also imposed hard constraints on the variance-covariance matrix of each 

component of the mixture. 

Among frequentist methods to estimate logit models, researches have explored iterative optimation methods. Within 

this class of methods, the expectation-maximization (EM) algorithm has been reported ( Bhat, 1997; Cherchi and Guevara, 

2012; Sohn, 2017 ) to outperform MSLE in numerical stability (i.e., less sensitivity to initial values), empirical identification 

(i.e., avoiding an invertible Hessian matrix), and estimation simplicity. Whereas MSLE directly maximizes the loglikelihood 

function using quasi-Newton methods, the simplicity of EM stems from iteratively maximizing a simpler surrogate function 

and update parameters while maintaining monotonic improvements in the loglikelihood ( Dempster et al., 1977; McLachlan 

and Krishnan, 2007 ). Furthermore, iterative parameter updates of the EM algorithm are either closed-form or straightfor- 

ward econometric problems that can be solved using standard statistical packages ( Train, 2008; Sohn, 2017 ). EM also pro- 

vides a convenient parameterization of the complete-data likelihood function without worrying about over-identification 

( Ruud, 1991 ). In addition to these nice statistical properties, EM also converges quickly to the neighborhood of the optima. 

However, EM is plagued by slower convergence within the optimum neighborhood ( Dempster et al., 1977 ). In fact, the com- 

putational performance of EM largely hinges upon the underlying data generating process and how well EM re-characterizes 

the objective function. More specifically, if the complete data model provides much more information about the parameter 

than the incomplete data model, then the EM algorithm is generally slow ( Meilijson, 1989 ). Ruud (1991) suggested de- 

signing hybrid algorithms such that EM starts the maximization process and a Newton-type algorithm finishes it. In fact, 

Bhat (1997) could achieve computational efficiency and numerical stability in latent class logit estimation by shifting from 

EM to quasi-Newton methods when the difference in the loglikelihood of successive iterations achieved a given precision. 

For some model specifications EM does not provide closed-form updates (the source of the EM benefits) for all param- 

eters, making EM a rather slow method for estimation. For this reason, researchers have been exploring other alternative 

estimation methods. EM is actually nested in the minorization-maximization (MM) family of iterative optimization methods 

1 Model flexibility understood as the capacity to represent unobserved preference heterogeneity. 
2 MON-MNL was labeled Mixed-Mixed Logit by Keane and Wasi (2013) and Latent Class Mixed Multinomial Logit model by Greene and Hensher (2013) . 
3 The mixture components can also be interpreted as classes as in a latent class logit model. 
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