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a b s t r a c t 

Continuous approximation (CA) is an efficient and parsimonious technique for modeling 

complex logistics problems. In this paper, we review recent studies that develop CA mod- 

els for transportation, distribution and logistics problems with the aim of synthesizing re- 

cent advancements and identifying current research gaps. This survey focuses on important 

principles and key results from CA models. In particular, we consider how these studies fill 

the gaps identified by the most recent literature reviews in this field. We observe that CA 

models are used in a wider range of applications, especially in the areas of facility loca- 

tion and integrated supply chain management. Most studies use CA as an alternative and a 

complement to discrete solution approaches; however, CA can also be used in combination 

with discrete approaches. We conclude with promising areas of future work. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Simchi-Levi et al. (1999) define supply chain and logistics management as “the set of approaches utilized to efficiently 

integrate suppliers, manufacturers, warehouses, and stores, so that merchandise is produced and distributed at the right 

quantities, to the right locations, and at the right time, in order to minimize system wide costs while satisfying service 

level requirements”. Numerous studies have been conducted to characterize, analyze and optimize planning, design and 

operations of logistics and transportation systems. Typical examples of such problems include those related to facility loca- 

tion planning and vehicle routing. Traditional approaches tended to characterize these problems in a discrete setting, e.g., 

with a fixed set of candidate facility locations, discrete time periods, and discrete customer demand points, so that these 

problems can be solved by well-developed integer mathematical programming techniques. For example, Daskin (1995) and 

Drezner (1995) systematically introduced a range of classic discrete facility location models including covering problems 

( Christofides, 1975; Church and ReVelle, 1974 ), center and median problems ( Hakimi, 1964 ) and fixed-charge location prob- 

lems ( Cornnejols et al., 1977; Mirzain, 1985 ). Later, a series of new discrete models have been proposed to address location 

problems with stochastic demand ( Daskin, 1982; 1983; Batta et al., 1989; Dasci and Laporte, 2005b ) and unreliable facility 

services ( Church and ReVelle, 1974; Snyder and Daskin, 2005; Qi and Shen, 2007; Berman et al., 2007; Qi et al., 2009; Cui 

et al., 2010; Lim et al., 2010; Chen et al., 2011; Li and Ouyang, 2011; 2012; Yun et al., 2015 ). Numerous discrete models have 
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also been developed to address vehicle routing issues at the operational level in both deterministic and stochastic environ- 

ments. See Baldacci et al. (2007) , Cordeau et al. (20 07) , Laporte (20 09) , Toth and Vigo (2002) and Gendreau et al. (1996) for 

some reviews. 

Although discrete models, especially with the help of modern computation power, can sometimes yield exact ( optimal ) 

solutions to large-scale logistics problems, they generally have a relatively complex formulation structure that may hin- 

der our understanding of problem properties and managerial insights. Often, the problems belong to the class of NP-hard 

problems, and hence solving large-scale instances would require enormous computational efforts which likely increase ex- 

ponentially with the problem instance size. Hence, it is often not practical to solve large-scale logistics problems to op- 

timality. Further, there is often uncertainty in the corresponding data and the lack of precision leads to inaccuracies in 

the optimal solution ( Daganzo, 1987 ). These drawbacks are particularly prominent if one attempts to make decisions (e.g., 

those on location, inventory and routing) in stochastic, time-varying, competitive and coupled environments. For example, 

stochasticity could arise from both the demand side (e.g., random customers) and the supply side (e.g., service disruptions) 

and imposes a large number of induced realization scenarios. System operation characteristics, such as link travel time and 

resource availability, can be time-dependent due to exogenous (e.g., weather condition) or endogenous factors (e.g., conges- 

tion). Competition among service providers and/or customers may require equilibrium considerations to be blended through 

a hierarchical modeling structure, such as a mathematical program with equilibrium constraints (MPEC) or an equilibrium 

problem with equilibrium constraints (EPEC) involving nonlinearities, which adds another layer of difficulty when tackled 

via discrete models. Emerging vehicle technologies (e.g., electric vehicles and autonomous cars) and transportation modes 

(e.g., car-sharing and ride-sourcing) pose new constraints to daily operations of vehicle fleets (e.g., electric vehicle charg- 

ing) and create new mobility paradigms bridging traditional public and private transportation services, necessitating fast, 

adaptable and easily implementable solutions which are computationally demanding to obtain via discrete models. 

The concept of continuous approximation (CA) as a complement to discrete models has been shown suitable for ad- 

dressing these above-mentioned challenges in various contexts 1 . The CA approach was first proposed by Newell (1971) and 

Newell (1973) and has been widely applied to various logistics problems including facility location, inventory management 

and vehicle routing. CA models feature continuous representations of input data and decision variables as density func- 

tions over time and space, and the key idea is to approximate the objective into a functional (e.g., integration) of localized 

functions that can be optimized by relatively simple analytical operations. Each localized function approximates the cost 

structure of a local neighborhood with nearly homogeneous settings. Such homogeneous approximation enables mapping 

otherwise high-dimensional decision variables into a low-dimensional space, allowing the optimal design for this neigh- 

borhood to be obtained with simple calculus, even when spatial stochasticity, temporal dynamics and other operational 

complexities are present. The results from such models often bear closed-form analytical structures that help reveal man- 

agerial insights. Compared with their discrete counterparts, CA methods generally incur less computational burden, require 

less accurate input data, and, more importantly, can conveniently reveal managerial insights, especially for large-scale practi- 

cal problems. These appealing features have motivated researchers to explore simple solutions for various complex problems 

arising in the logistics and transportation fields in the past few decades. 

CA has been applied to three basic logistics problem classes: location, routing and inventory management. In earlier 

applications, CA was used to determine facility locations and corresponding assignments of customers to these facilities in 

a continuous space ( Newell, 1973; Daganzo and Newell, 1986 ). The key to a CA location problem is to balance the tradeoff

between long-term transportation cost and one-time facility investment, which is usually formulated as analytical functions 

of local facility density (or its inverse, a facility’s service area). Further, CA is used to formulate routing problems that 

determine the most economic routes for vehicles to deliver or pickup commodities or people across a continuous space. The 

scope of routing problems includes single vehicle delivery (also known as the traveling salesman problem) ( Daganzo, 1984a ), 

multi-vehicle based distribution ( Newell and Daganzo, 1986 ), and multi-echelon distribution with intermediate consolidation 

and transshipment facilities ( Daganzo, 1988 ). A fundamental problem in CA-based routing is to format or partition the 

space into certain geometries suitable for constructing near-optimum vehicle routes with simple heuristics. An inventory 

management problem investigates the trade-off between the inventory size and the corresponding transportation cost at 

a supply chain facility ( Blumenfeld et al., 1991 ). With homogeneous approximation in local spatiotemporal neighborhoods, 

the basic system cost in an inventory management problem can be often formulated into an economic-order-quantity (EOQ) 

function that has a simple analytical solution to the optimal design ( Harris, 1990 ). 

These three basic problem classes have been integrated in different combinations to address more complex problems 

faced in real-world logistics systems. Inventory operations at a facility are ultimately determined by the demand size and 

the service area of this facility, which is the outcome of location decisions. This connection is modeled with CA integrating 

both location and routing decisions ( Rosenfield et al., 1992 ). An apparent tradeoff is that a higher investment of facilities 

usually reduces long-haul distances for delivery vehicles and thus decreases the total routing cost. In problems integrat- 

ing routing and inventory decisions, CA relates service area sizes and frequencies of delivery trucks to inventory sizes and 

holding costs ( Daganzo, 1988 ). The basic tradeoff is that a higher delivery frequency and a smaller service area often re- 

duce inventory costs while increasing transportation costs. In problems where location, inventory and routing costs are all 

1 In the literature, ‘continuous approximation’ and ‘continuum approximation’ have been used interchangeably. In this paper, we use ‘continuous approx- 

imation’ but include papers using both terms. 
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