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A B S T R A C T

Reduced-order physics-based models of lithium-ion cells provide the opportunity for a battery-management
system to define battery-pack operational limits in terms of cell internal electrochemical processes in order to
mitigate degradation and to avoid failure modes. For these physics-based models to be relevant over the lifetime
of the battery pack, they must somehow adjust to describe the internal processes accurately at every stage of
battery life. Two possible approaches to do so suggest themselves. First, an algorithm might somehow adapt the
parameter values of the model during operation to match presently observed current–voltage behaviors; but, this
must be done very carefully to avoid making the model unstable or physically nonmeaningful. Alternately, a set
of models could be pre-computed at different feasible aging points and the model from this set that most closely
predicts presently observed current–voltage dynamics could be selected from the set. This second approach
guarantees stable and physically meaningful models since all models in the pre-computed set meet these criteria.
We propose such an approach here.

To do so, we first present a method for calculating a priori the changes to cell parameter values that will be
produced by aging due to side reactions and/or material loss. These aged parameter values are utilized to
produce reduced-order physics-based models at different stages of cell life. The reduced-order models are then
used within a nonlinear interacting multiple-model Kalman filter to select the pre-computed model whose
voltage predictions most resembles present measured voltage, so providing an estimate of the aged parameter
values of a cell via the parameter values of this model. The selected model may then be used for state-of-charge
estimation, state-of-power estimation, state-of-energy estimation, and other model-based battery-management
tasks.

1. Introduction

Applications requiring high power and energy densities (e.g., utility-
scale grid storage or hybrid and electric vehicles) have created sig-
nificant demand for reliable and cost-effective energy-storage technol-
ogies. Lithium-ion batteries are perhaps the best energy-storage tech-
nology currently available to meet these demands due to their high
energy density, high specific energy, and low self-discharge rates.
Lithium-ion cells are not without drawbacks, the most significant being
their cost and possible safety hazards when misused. To reduce the
lifetime costs and to ensure the correct utilization of lithium-ion cells,
battery management systems (BMS) are implemented between the
battery and host application, to inform the host controller regarding
energy and instantaneous power limits of the battery, as well as as-
sessments of the cell's state-of-health [1–3].

Mathematical models of lithium-ion cell behavior are at the core of

a BMS, by providing forecasts of variables that allow calculating the
power and energy that can be delivered by its cells before predefined
operating limits are reached. Modern BMS utilize equivalent-circuit
models (ECMs) to predict cell behavior, with associated voltage oper-
ating limits that have been found to prevent rapid aging and cata-
strophic failure in the majority of circumstances [4,5,2]. By combining
various linear and nonlinear circuit elements to represent empirically
observed behavior, ECMs model cell voltage at the terminals. However,
the models are valid only within the operating region for which they
were created — they offer no predictive value outside of the data used
to create them. Additionally, ECMs generally convey little or no in-
formation about the chemical processes at work within the cell. These
empirically derived models and operating limits succeed in ensuring the
safe operation of batteries, but are unable to optimize a tradeoff be-
tween performance and life directly since cell degradation depends
most fundamentally on mechanisms dependent on the internal
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electrochemical state of the cell, which is not predicted by an ECM. The
lack of transparency to the internal behavior of the cells means that
excess capacity must be designed into the battery pack and conservative
operating constraints must be used to avoid premature aging when
using ECM with BMS.

To overcome the shortcomings of ECMs, models have been devel-
oped based on the physics of the chemical processes occurring within
cells [6–9]. These physics-based models (PBMs) offer insight into
electrochemical variables within the cell (such as electrical potentials,
lithium movement, and lithium concentrations) in addition to the vol-
tage measured at the terminals, and offer predictive value for a wide
range of possible inputs. This information, however, comes with a
significant computational cost. The coupled partial-differential equa-
tions (PDEs) that define PBMs are too demanding computationally to be
evaluated in real-time by the hardware available within a BMS.
Somehow, these models must be approximated with high accuracy but
low computational complexity. This is generally done via model-order
reduction. A number of model-order-reduction strategies appear in the
literature. Most simplify the full-order model by approximating the PDE
describing mass diffusion in the solid particles. Polynomial approx-
imation [10–12], Padé approximation [13] and proper orthogonal de-
composition [14,15] are some candidate methods.

While the method we propose in this paper could be applied to any
reduced-order model in state-space form, we prefer a transfer-function
approach coupled with a subspace-based model-identification method
to reducing model order (e.g., the discrete-time realization algorithm
[1,16]). This method gives a complete cell model of very low order
(e.g., 6 independent linear ordinary difference equations (ODEs) pro-
vide “states” that are combined in a nonlinear way to predict values for
all internal electrochemical variables of the cell at any desired set of
locations as well as overall cell terminal voltage). The resulting com-
putational complexity is often on the same order as for ECMs. These
physics-based reduced-order models (ROMs) can enable BMS to provide
energy and power availability estimates based on internal electro-
chemical variables, rather than voltage limits alone. For example,

performance improvements might be realized by allowing terminal
voltages to exceed typical limits when internal chemical quantity esti-
mates indicate little chance of rapid aging, and by limiting or halting
cell operation even within typical voltage limits when the internal es-
timates indicate a high likelihood of rapid or catastrophic degradation.
For example, one reference [17] shows that electrochemically limited
pulse charging a 6 Ah cell to the same negative-electrode phase-po-
tential ϕs− ϕe at the negative-electrode/separator boundary as en-
countered at equilibrium at 100% SOC increases usable charge power
by 22% and usable energy by 212% versus voltage-limited charging.

Whether using ECMs or ROMs as the cell model within a BMS,
unavoidable aging processes will occur [18]. Battery-management
systems must have means to quantify this aging in a state-of-health
(SOH) metric, which must indicate, at a minimum, how bulk attributes
of the cell such as capacity and ohmic resistance change such that the
ability of the cell to store energy and deliver power is reduced.1 These
degradation processes cause an aged cell to behave differently from a
new cell whether using ECMs or PBMs. To ensure accurate estimates, an
update to model parameter values is required over time. Methods for
updating these parameter values fall into two general categories:

1. Parameter estimation: Similar to state estimation, parameter esti-
mation seeks to use on-line measurements to estimate model para-
meter values (rather than the model's state). As the only on-line
measurement data typically available to a BMS are the applied
electrical current, terminal voltage, and cell temperature, both state
and parameter estimation must be run simultaneously using the
same measurements. There are several ways to approach this esti-
mation problem (see below), but all solution techniques in some

Nomenclature

A surface area of the electrode, m2

A state transition matrix of the state-space model
as specific surface area of the porous electrode, m2m−3

B input matrix of the state-space model
C output matrix of the state-space model
c concentration of lithium in phase indicated by subscript,

mol m−3

cs,max maximum lithium concentration in an electrode particle,
mol m−3

cs,e surface concentration of lithium in a spherical electrode
particle, mol m−3

D input-output coupling matrix of the state-space model
De,eff effective electrolyte diffusivity, m2 s−1

Ds solid diffusivity, m2 s−1

F Faraday's constant, 96 485 Cmol−1

iapp applied cell current, A
j reaction flux, mol m−2 s−1

k0 rate constant for the electrochemical reaction,
molα−1 m4−3α s−1

L (without subscript) length of the cell, m
L (with subscript) length of region of cell, m
mk operating mode of system at time k
pij IMM transition probability matrix
Q cell capacity, A hr
r radial coordinate, m
R universal gas constant, 8.31451 Jmol−1 K−1

Rf film resistance, Ωm2

T temperature, K
+t 0 transference number
t time, s
Uocp open circuit potential, V
x lD linear coordinate across the cell, m
x state of state-space model
y linear output of state-space model

Greek

α charge-transfer coefficient
α capacity remaining in an aged lithium-ion cell
ε volume fraction of phase indicated by subscript
ϕ potential of the phase indicated by subscript, V
η local overpotential, V
κeff effective electrolyte conductivity, S m−1

Λj likelihood of measured output given model j is correct
μ probability mass function for best fitting IMM model
σeff effective solid conductivity, S m−1

θ stoichiometric coefficient of electrode

Subscript/superscript

n pertaining to the negative electrode
p pertaining to the positive electrode
s pertaining to the solid phase

1 The method presented herein finds the closest pre-computed set of aged
parameter values to the present operating condition of the cell, which means
that it can closely track all aged parameter values, including aging in the
stoichiometries of the open-circuit-potential functions of both electrodes, and
thus in the overall cell open-circuit voltage relationship, for example.
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