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ABSTRACT A wavelet method for solving strongly nonlinear boundary value problems is de-
scribed, which has been demonstrated early to have a convergence rate of order 4, almost in-
dependent of the nonlinear intensity of the equations. By using such a method, we study the
bending problem of a circular plate with arbitrary large deflection. As the deflection increases,
the bending behavior usually exhibits a so-called plate-to-membrane transition. Capturing such
a transition has ever frustrated researchers for decades. However, without introducing any addi-
tional treatment, we show in this study that the proposed wavelet solutions can naturally cover
the plate-membrane transition region as the plate deflection increases. In addition, the high ac-
curacy and efficiency of the wavelet method in solving strongly nonlinear problems is numerically
confirmed, and applicable scopes for the linear, the membrane and the von Karman plate theories
are identified with respect to the large deformation bending of circular plates.
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I. INTRODUCTION

Plate structures as one of the fundamental and important industrial components are widely used
in different engineering fields including civil, mechanical, aeronautical and marine engineering, whose
mechanical, especially bending behaviors, have triggered extensive study by scientists and engineers!* 8l
For the bending of a thin plate, if deflection is smaller than its thickness, in-plane deformation can be
neglected, while a linear fourth-order differential equation, i.e. the so-called bending equation of plate,
can well describe the deflection of the plate. As the deflection becomes much larger than its thickness,
the bending rigidity of the plate can be neglected, a second-order nonlinear differential equation, i.e.
the membrane equation, is able to determine the deflection of the plate. For the intermediate state,
i.e. the deflection comparable to plate thickness, plate bending becomes determinable by the nonlinear
Von Karman equations!’ 3. Although, solutions to the plate and membrane equations under various
boundary and loading conditions have been obtained both numerically and even analytically, yet those
to Von Karman’s equations under general loading and boundary conditions are still rarely known!! 4.
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Research on solving the Von Karman equations has a long history, during which many techniques
have been proposed and used 4. For example, Vincent!* proposed a perturbation method by using
an applied load as the small parameter to solve the bending problem of a circular thin plate subjected
to a uniformly distributed load. However, such a method is no longer valid when the load becomes very
large. To overcome this limitation, Qian/®, and Qian and Yeh!® suggested a perturbation procedure
which, instead, chooses the central displacement of the plate as the perturbation parameter. This
technique has significantly extended the application scope of the perturbation method. However, when
the plate deflection increases to a certain level, such a method, which takes linear bending solution as
the initial perturbation solution, cannot solve the problem anymore. Thus Qian!” further modified the
perturbation method by using the membrane solution as the initial perturbation solution for the bending
problem of plates under extremely large deflection. Unfortunately, there exists a deflection range, where
out-plane bending and in-plane stretching are almost equally important, making the above-mentioned
two perturbation procedures developed by Qianl®>7 and Qian and Yeh!® no longer valid. This is the
so-called ‘plate-to-membrane transition problem’ for the bending of thin plates under large deflection,
which has frustrated researchers in this field for decades since its discovery by Qian et al.[. Until
the 1990s, Zheng, Zhou and other coworkers!! 911 were not able to solve the ‘transition problem’ and
prove the convergency of relevant solutions with a special technique called the ‘interpolation iterative
method’.

On the other hand, many numerical methods have been employed to solve the Von Karman equations,
which include the finite element method!*?!, the boundary element method!*®! and the finite difference
method['¥ etc. However, these methods share a common weakness that their numerical error increases
rapidly as the deflection increases, making it very hard to deal with the ‘transition problems’ accurately
and efficiently.

In spite of the above progress, solution to mechanical problems of continuum structures with arbitrary
large deformation is still very difficult. In order to find a suitable method that is mathematically
rigorous and numerically convenient for solving general strong nonlinear problems in structural mechanics
including the large deflection bending of circular plate, the authors choose their recently developed
wavelet method™® as a candidate to solve the Von Karman equations with different boundary conditions
subjected to various loadings. The choice can be viewed as a modified wavelet Galerkin method capable of
overcoming serious drawbacks of existing conventional ones!'6 18], Most importantly, its computational
accuracy!'® almost independent of the nonlinear intensity of the equation is beyond comparel'® 24,

In what follows, the wavelet method is described at length to show how one can use such a method
to solve the Von Karman equations under arbitrary large deformation.

II. THE VON KARMAN THEORY FOR CIRCULAR THIN PLATES

The large deflection bending problem of circular thin plates subjected to a uniformly distributed
load can be described by the Von Karman equations as follows!' 2!
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In Egs.(1) and (2), the dimensionless quantities y = 72/a?, W(y) = /3(1 —v2)w(y)/h, ¢(y) =
ydW(y)/dy, S(y) = 3(1 — v?)a?yN,/(Eh?) and p = [3(1 — v?)]*/2a’q/(ER*), in which r is the ra-
dial coordinates whose origin locates at the center of the plate, E, v, a, h and w(y) are respectively
Young’s modulus, the Poisson’s ratio, radius, thickness and deflection of the plate, N,.(y) denotes the ra-
dial membrane force of the plate, g is the external uniform loading. The boundary conditions associated
with Eqgs.(1) and (2) are

py)=S(y)=0 at y=0 (3)
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where A and p are parameters related to the boundary condition at y = 1. Specifically, for four kinds
of common boundary conditions, we havel!l
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