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A B S T R A C T

Predicting the highest battery temperature, the core temperature, is an important task for the safe operation of
lithium-ion batteries. This prediction task is complicated by inherent system uncertainties that result in un-
certain core temperature estimates. Aside from model, parameter and measurement uncertainty, this also in-
cludes uncertain user behavior in form of uncertain future discharge currents. However, measurable quantities
like voltage, surface temperature or discharge current can potentially decrease the uncertainty in predicting the
core temperature. The extent to which a measurement is able to decrease this estimation uncertainty, called data
worth, depends on the uncertainty scenario. We conduct a model-based study to investigate the potential of
voltage, current and surface temperature measurements to decrease core temperature estimation uncertainty.
We use our previously developed stochastic, physically-based battery model to estimate the core battery tem-
perature of a cylindrical LiFePO4-Graphite cell. The data worth is computed with the Preposterior Data Impact
Accessor method. We find that the common input to state-of-charge estimation methods, i.e. voltage and current
measurements, can theoretically partially substitute a temperature measurement, if the user behavior is an-
ticipated to some degree. Moreover, we highlight the importance of adequately estimating the involved un-
certainties when assessing the data worth of measurement quantities.

1. Introduction

Lithium-Ion batteries have been steadily growing in importance
since their commercial introduction in the early nineties. Due to their
favorable energy density and good cycle life, they are used in a variety
of every-day applications. These include their dominant use in personal
mobile applications, like laptops and mobile phones, as well as the
more recent advent of electrical, battery-powered transportation.

Although rare when compared to the amount of lithium-ion bat-
teries produced [1], catastrophic failures have been frequently re-
corded. Thermal runaway incidents are widely reported and pose a
threat both to personal life of customers and passengers, as well as to
the economic well-being of the manufacturing companies because of
costly product recalls. Consequently, battery safety is a constant con-
cern that spans the design, manufacturing and operation phases of li-
thium-ion battery technology.

For the safe operation of a battery, the monitoring and estimation of
its temperature distribution is of critical importance. The hottest point
in a cylindrical cell is usually the core temperature. Yet, direct core
temperature measurements are not common in deployed systems, and
up till this point usually only done for research studies. Thus, the core

temperature is commonly inferred from other measurement quantities.
These include the series battery resistances [2], although not applied to
lithium-ion batteries, and more recently the core temperature estima-
tion from electrochemical impedance spectroscopy (e.g. [3–5]).

Most commonly, voltage, current and the surface temperature are
available for battery state estimation [6]. A large number of methods
can be used to estimate the core temperature from these quantities, or
possibly from a subset these quantities. Often, a numerical model,
ranging from equivalent circuit models to elaborate physical models, is
used to simulate the relationship between the core temperature and the
measurement quantities [7].

However, the modeling of any system is challenged by inherent
uncertainties [8]:

1. The model, as a functional relationship between parameters and
system states, approximates the real system and introduces struc-
tural model uncertainty.

2. Model parameters can be chosen inappropriately, especially if lim-
ited data is available for calibration, which introduces parameter
uncertainty.

3. Measurements are noisy and introduce measurement uncertainty.
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4. Varying model input (e.g., the user's discharge behavior) introduces
additional input uncertainty.

All these different uncertainty sources result in uncertain model
predictions, and in our case in an uncertain estimation of the core
temperature.

Uncertainties are a lack of information about the real system state
and can be treated stochastically, even though the true (but unknown)
state is assumed to be deterministic. Such epistemic uncertainties can
potentially be reduced by obtaining more information about the system
during operation. By doing so, the model is fused with newly acquired
system information.

The influence of a newly acquired measurement on the core tem-
perature estimation depends on the measurement type, the character
and magnitude of the involved uncertainties, and the evolution of the
system state over time. We refer to the strength of this influence, i.e. the
amount of uncertainty reduction in the estimated battery core tem-
perature, as data worth [9], based on a common concept borrowed from
the environmental sciences.

There is a plethora of studies that use probabilistic methods to es-
timate battery states like the state of charge (SOC) or the state of health
(SOH). Fewer studies are explicitly concerned with the probabilistic
estimation of the temperature distribution or select temperature states
of the battery. These studies usually use simplified thermal models,
possibly coupled with an electrical model, in combination with a
probabilistic estimation technique to estimate the core or inner tem-
perature, like Kalman filters (KF) [10–12], adaptive KFs [13], extended
KFs [14], or dual KFs [15]. Liu et al. [16] adopted a different approach
by using a controlled auto-regressive integrated moving average model
for thermal predictive control of the charging process.

Moreover, there exist a few studies that focus on the influence of
uncertain measurements on different modeling objectives. Stevanatto
et al. [17] developed a detailed measurement model for impedance
measurements of lead-acid batteries and investigate their influence on
parameter identification. Wold et al. [18] analyzed the influence of
measurement uncertainties for current, voltage and time on capacity
and coulombic efficiency, by modeling the measurement errors. How-
ever, to the best knowledge of the authors, there has not been any study
that combines both angles and focuses on the impact of measurement
quantities on the predictive estimation uncertainty of the battery core
temperature. Anthony et al. [19] touch upon this question when as-
sessing the experimental uncertainty sources of their analytical estimate
of the core temperature from circumferential temperature measure-
ments, but did not investigate the potential of different measurement
quantities to improve the prediction.

The goals of our model-based study are to:

• assess the usefulness of different measurement quantity combina-
tions for estimating the core battery temperature.

• determine whether and how additional information about the dis-
charge current can increase the certainty of core temperature pre-
diction.

To reach these goals, we use a stochastic, physically-based battery
model of an A123 LiFePO4-Graphite lithium-ion battery [20]. This
stochastic model is able to predict the battery temperature as a prob-
ability density function (PDF) by running a Monte-Carlo simulation.
The Monte-Carlo simulation serves as an input to the Preposterior Data
Impact Accessor (PreDIA) method [21], which computes the data worth

of different measurement types on the battery core temperature. We
explore different uncertainty scenarios, in which the user's behavior,
i.e., the discharge current, is known to different degrees.

Our contributions are a unique analysis of the effect of different
measurement types on the prediction and estimation of the battery core
temperature under different uncertainty scenarios, from which we de-
rive conclusions for data choice and recommendations for future re-
search.

The paper is structured as follows: Section 2 briefly presents the
stochastic, physically-based battery model. This is followed by a brief
introduction to the data worth assessment method PreDIA in Section 3.
Section 4 applies the previously introduced methods to a 1C discharge
scenario under different uncertainty scenarios and discusses the influ-
ence of the different measurement quantities on the core temperature
estimation. Finally, we summarize our conclusions and end with a brief
outlook on future work.

2. Stochastic battery model

As the basic building block, our methodology requires a stochastic
model that allows us to compute different realizations of a discharge
scenario. Although our methodology can be used with different types of
stochastic models, we use a stochastic, physically-based battery model
in this study, as described by Mehne and Nowak [20]. For convenience,
we give a brief summary of the model in this section.

The stochastic model extends the (deterministic) physically-based,
thermo-electrochemical battery model framework presented in Hellwig
et al. [22] and Hellwig [23]. The development of this modeling fra-
mework is ongoing and it has been used in a large number of applica-
tions for different types of batteries. In the case of lithium-ion batteries,
these include for example the aging of LiFePO4-Graphite cells [24], and
thermal decomposition reactions during thermal runaway [25]. How-
ever, in this study we are interested in the uncertain evolution and the
prediction of temperatures, not in modeling aging or thermal decom-
position, such that the aforementioned model by Hellwig [23] is ade-
quate in the scope of this study.

The physically-based thermo-electrochemical model simulates an
A123 LiFePO4-Graphite 26650 cylindrical cell as a 1D radially sym-
metric system and makes use of different scales to model the respective
physical processes. The model comprises of an electrochemical and a
thermal part.

The electrochemical part models charge and mass transfer on the
scale of an electrode pair (pseudo-2D approach). Because we are mainly
interested in the temperature evolution and in estimating the battery
core temperature, we focus on presenting the thermal processes. For
electrochemical details, please refer to the cited sources [23].

The thermal model part exchanges heat produced and consumed by
the electrochemical processes via heat source and sink terms. For easier
derivation, we subsume all heat source terms with a combined heat
generation term q̇, which results in the following partial differential
equation (PDE) governing the heat transfer process [26]:

∂
∂

− ∇ ∇ =ρc
t

T t k T t q t( ( )) ·( ( )) ˙ ( ),p (1)

where t is time, T the temperature field, k the thermal conductivity, ρ
the material density and cp the specific heat capacity.

Moreover, the model can dissipate heat over its surface by means of:

1. heat convection: = −q T T˙ h A( )c s a , where h is the heat transfer
coefficient, A the surface area of the battery, Ts the surface tem-
perature and Ta the ambient temperature.

2. radiation: = −q σ A T T˙ ϵ ( )r r r s
4

a
4 , where ϵr is the emissivity of the

battery surface and σr is the Stefan–Boltzmann constant.

The model has been calibrated to experimental data [20,23]. The
resulting thermal model parameters are listed in Table 1. A more
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WN white noise
AR auto-regressive
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