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A B S T R A C T

Existing methods for electromotive force (EMF) characterization that make use of readily available data, such as
terminal voltage and applied current, require a significant time commitment and a constant temperature en-
vironment. Both linear interpolation and extrapolation rely on state-of-charge (SOC) calculation by Coulomb-
counting which only serves to reduce the accuracy of the resulting EMF-SOC curve(s). A battery management
system requires accurate EMF-SOC data for periodic recalibration otherwise it cannot apply proper charge
control. This paper presents an alternative concentration-based method for EMF characterization and the key lies
in the fact that molality is not influenced by temperature. A modified version of the Nernst equation and
temperature-compensated open-circuit voltage measurements are used to estimate the molality when the cell is
at rest. During operation, the energy into or out of the cell is mapped to changes in the estimated molality to
calculate the EMF as the cell charges or discharges. The concentration-based method is verified using experi-
mental data from valve-regulated lead-acid cells and its EMF curves are compared to those of linear interpolation
and extrapolation. The proposed method has less stringent practical requirements and validation results indicate
a significant improvement in accuracy and applicability over the existing methods.

1. Introduction

The intense pace of battery research and development over the past
few decades have been spurred by the ultimate goal of an inexpensive
high-performance cell that is both safe and scalable [1,2]. As such,
battery cells are available in a wide variety of chemistries, shapes and
sizes with even more designs, such as aqueous redox flow batteries and
non-aqueous metal air batteries, under active investigation [3,4]. Other
research efforts try to improve our current understanding of cell be-
haviour and use these new insights to develop advanced charge control
algorithms [5,6]. Regardless of the chemistry or construction of a spe-
cific battery cell, an intrinsic relationship between the cell’s electro-
motive force (EMF) and the remaining useful capacity, called state-of-
charge (SOC), exists [7,8].

On-board SOC estimation using traditional Coulomb-counting is
problematic because the reference capacity can be different from the
actual capacity and any errors in current measurement are amplified
due to the integration operator [9,10]. The battery management system
(BMS) makes use of the EMF-SOC relationship to periodically recali-
brate the SOC estimate. This recalibration is achieved by taking stable
open-circuit voltage (OCV) measurements and referring to a lookup

table describing the EMF-SOC curve to obtain the corresponding SOC
[5,7,11]. The EMF-SOC curve for chemistries such as lithium iron
phosphate can be problematic because the curve is flat for a significant
range of the SOC [5]. The EMF-SOC curve is typically characterized at a
constant temperature of 25ºC before a cell is used in its intended ap-
plication i.e. it is obtained offline in a temperature-controlled en-
vironment. Such a curve is also called an OCV-SOC curve and can
sometimes be found on the manufacturer’s datasheet.

The purpose of EMF (or OCV) characterization is to obtain a re-
presentative curve describing a cell’s behaviour in terms of its EMF.
Data such as voltage and current measurements are the norm in a ty-
pical battery energy storage application and, as such, characterization
methods that make use of this readily available data are emphasized
here [12]. The existing methods for EMF characterization under con-
sideration in the current work are known as voltage relaxation, linear
interpolation and linear extrapolation [13]. The voltage relaxation
method is sometimes called the incremental OCV method [14]. These
methods typically result in nonlinear monotonic curves with the SOC on
the x-axis and the EMF on the y-axis. For exact details on these methods
and their implementation to nickel-cadmium and lithium-ion batteries,
the reader is referred to the work by Bergveld [13] and Pop [15,16].
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The shortcomings of the existing methods for EMF characterization
will now be explained. The voltage relaxation method requires a sig-
nificant time commitment and favours the use of the other two
methods: linear interpolation and linear extrapolation [17–19]. How-
ever, both the voltage relaxation and the linear extrapolation methods
result in two EMF-SOC curves wherein hysteresis can be observed: one
valid for charge and the other valid for discharge [13]. The linear in-
terpolation method produces a single EMF curve and incorrectly as-
sumes that the cell’s internal resistance is symmetric during charge and
discharge [20]. Without hysteretic information, control algorithms in a
BMS cannot achieve their purpose in terms of monitoring and diagnosis
[21]. Challenging requirements common to all three methods are the
use of sufficiently low charge or discharge rates and a constant tem-
perature environment [1].

In addition, Coulomb-counting is employed in all three existing
methods to obtain the SOC data for the x-axis of these curves, which in
itself reduces the accuracy of the resulting curve(s) [14]. The SOC
calculations involved in the existing methods rely on predefining the
battery as either full before starting a discharge, or as empty before a
charge. Without these reference values, the SOC cannot be calculated
[13]. As mentioned earlier, the three existing methods rely on SOC
calculations which are known for integrating errors over time along
with the charge into or out of the battery [15]. The BMS will not be able
to apply proper charge control without accurate SOC information ob-
tained from an EMF-SOC curve [22,23]. Even slight inaccuracy in SOC
indication can be severely detrimental to battery electrode and elec-
trolyte materials over time because the BMS then regularly operates
outside of the recommended SOC range. Other approaches avoid the
issues associated with SOC calculation and use analytical descriptions
to model the EMF but involve a large number of parameters [6].

It is worth noting that on-board SOC estimation based on Coulomb-
counting can be sufficiently accurate when more complex techniques
other than lookup tables are employed. Advanced signal processing can
compensate for sensor noise and online parameter identification en-
ables adaptive battery models [3,24]. Online parameter identification
has also been combined with Kalman-filter observers, amongst others,
in model-based SOC estimation to monitor capacity loss in real time
[25,26]. However, estimation accuracy deteriorates when the ambient
temperature changes because the EMF-SOC curve is influenced by
temperature. On-board implementation of these adaptive filter ap-
proaches is possible because they are less complex than state estimation
techniques that try to model electrochemical processes during opera-
tion [9].

In the current work, an alternative method for EMF characterization
of secondary cells is investigated. The aim is to develop a method that
does not rely on SOC calculations or a temperature-controlled en-
vironment. Sophisticated approaches using expensive equipment, such
as electrochemical impedance spectroscopy, or advanced signal pro-
cessing are not considered. The resulting method makes use of a few
simple equations to obtain estimates of the electrolyte molality and
maps the energy into or out of the cell to changes in the estimated
molality during operation. The estimated molality during operation is
used to obtain the EMF when the cell is not in an open-circuit condition.
As such, this method is called the concentration-based method for EMF
characterization.

Section 2 starts by explaining the theoretical foundation of the
concentration-based method for EMF characterization followed by the
details of temperature compensation. The concentration-based method
is then applied to a valve-regulated lead-acid (VRLA) cell with an ab-
sorbed glass mat (AGM) separator as an example. The particulars for

Nomenclature

AGM Absorbed glass mat
BMS Battery management system
CC Coulomb-counting
COV Cut-off voltage
EMF Electromotive force
GOF Goodness-of-fit
LAB Lead-acid battery
OCV Open-circuit voltage
SOC State-of-charge
VRLA Valve-regulated lead-acid
Subscript 1 Denotes time instant t1
Subscript 2 Denotes time instant t2
Subscript c Denotes charging
Subscript d Denotes discharging
Subscript j Denotes time instant tj
Subscript k Denotes time instant tk
a Species activity
c Molar concentration or molarity ( ⋅ −mol L 1)
Λ Empirical constants for temperature coefficient calcu-

lation
E EMF of an electrochemical cell (V)
E* Stable OCV measurements for a cell’s EMF (V)

°E A cell’s standard electrode potential at reference tem-
perature (V)

Eext EMF from linear extrapolation (V)
Efit EMF curve as fitted from data (V)
Eint EMF from linear interpolation (V)
Eval Stable OCV measurements used for validation (V)
F Faraday constant of 96,485 ⋅ −C mol 1

γ Activity coefficient
id Applied current during discharge (A)

m Molal concentration or molality ( ⋅ −mol kg 1)
m̂ Estimated molality ( ⋅ −mol kg 1)
mtotal Total change in molality during operation ( ⋅ −mol kg 1)
m mor1 2 Molality at that time instant ( ⋅ −mol kg 1)
mk Molal concentration or molality at time instant tk

( ⋅ −mol kg 1)
n Number of electrons transferred
Q Reaction quotient
QR Rated charged capacity (Ah)
R Universal gas constant of 8.3144 ⋅ ⋅ −J (mol K) 1

rmse Root mean squared error
rsq R-square adjusted for degrees-of-freedom in the error
rmsev Root mean squared error on validation data
sse Sum of squares due to error
ssev Sum of squares due to error on validation data
T Absolute temperature (K)
Tref Reference temperature of °298.15K(25 C)
t Time (s)
t1 Time instant before operation starts (s)
t2 Time instant after operation has ended (s)
vd Measured discharge voltage (V)
v t( )lc, Voltage profile number l during charging (V)
v t( )ld, Voltage profile number l during discharging (V)
w Electric work from the power delivered or absorbed by

the cell over a specified period of time (Wh)
wmax Maximum electric work (Wh)
wtotal Total change in electric work done by the cell during

discharge (Wh)
w wor1 2 Sum of the work done by the cell up until that time

instant (Wh)
wk Sum of the work done by the cell up until some instant

tk (Wh)
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